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Abstract

With the mounting amount of data collected and processed every day, machine learning practicioners need au-
tomated ways to analyze and extract informative patterns out of this evergrowing mass of information. In the
business and the scientific worlds, modeling complex phenomena from a small set of predictive variables is par-
ticularly sought after. For instance, companies try to identify the key predictors that push a customer to buy their
products; in medicine, biostatisticians try to isolate a handful of genes responsible for the expression of a specific
type of cancer. This intuition of underlying simplicity has long been discussed in science and is coined the parci-
mony principle. Simply put, for two statistical models of similar predictive power, the one with fewer predictive
variables should be selected. Sparse generalized linear models (GLM) form an important class of parametric sta-
tistical estimators that estimate solutions having a handful of predictive variables, thus abiding by this parcimony
principle. Their statistical properties have been extensively studied and are used everyday by machine learning
practicioners to infer a relationship between a set of predictive variables and a target variable. The goal of this
thesis is to create a fast and versatile algorithm to estimate the solutions of these highly-used models.

We present skglm, a state-of-the-art solver to efficiently estimate the solutions of sparse generalized linear
models. This solver is released in a professional quality open-source library, integrated to the scikit-learn
ecosystem. With this library, we fully bring to practicioners the power of a wide variety of sparse GLMs, through
an off-the-shelf, lightning fast solver with a convenient API. Along this thesis, skglm has been presented in
Bertrand, Klopfenstein, Bannier, Gidel, and Massias (2022).

We first study why sparsity creates non-smooth optimization problems, which require a new set of tools to be
solved. We review the main properties of proximal operators and their ability to minimize a smooth approxima-
tion of a non-smooth function. Then we focus on Fenchel-Rockafellar duality theory and derive a few sparse
GLM dual problems. All these tools are crucial to develop first-order methods in non-smooth optimization to
solve composite ‘smooth + nonsmooth’ separable problems. We review proximal gradient descent and proxi-
mal coordinate descent. After having derived the convergence rates of these descent methods, we explain why a
cyclic feature selection strategy in coordinate descent is usually the fastest. Using this strategy, we demonstrate
that the larger step sizes used by coordinate descent makes it a faster method than proximal gradient descent.
This theoretical result is validated by extensive experimentation and justifies why coordinate descent is used as
the backbone solver in skglm.

However fast it may be, our experiments show that coordinate descent as is remains very slow for very large
datasets typical in the real world. To tackle these very high-dimensional problems, coordinate descent must be
equipped with additional techniques to reduce the complexity of the problem at hand. Screening rules are pow-
erful tools to dramatically increase the convergence speed of a solver, but remains unavailable for non-convex
penalties. Nonetheless, working sets can be used for convex and non-convex penalties by adapting the underlying
scoring strategy of features. As demonstrated in our experiments, the working set strategy embarked in skglm
plays a central role in the performance of the solver. The second component ubiquitous in modern solvers is
acceleration. Inertial acceleration and non-linear extrapolation are analyzed. It is observed that although both ac-
celeration techniques improve the convergence rate, non-linear extrapolation outperforms inertial acceleration on
a wide variety of setups in practice. An instance of such extrapolation techniques is called Anderson acceleration
and is integrated to skglm. Through ablation studies, we demonstrate the importance of the combination of a
working set strategy and Anderson acceleration to achieve fast convergence speed.

Finally we investigate non-convex penalties and explain their superiority over convex penalties. When solving
these optimization problems, no dual problem is available to offer a complementary perspective on the optimiza-
tion problem under scrutiny. This forces us to adapt skglm’s working set algorithm by integrating new feature
ranking strategies available in convex and non-convex regimes. We show through extensive experimentation that
our methods is the fastest among existing non-convex solvers. We conclude this thesis by discussing the practical
choices of implementation of skglm.
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1 Introduction
As we have entered the big data era, petabytes of data are generated, collected and processed every day. This
sheer amount of information is analyzed to extract informative patterns that are ubiquitous in every aspect of our
lives: finance, healthcare, to name a few. Extracting useful information out of this large amount of data requires
automated methods of data analysis and prediction, provided under the common denomination of “machine learn-
ing” (Bishop, 2007). Machine learning encompasses a wide variety of tasks requiring distinct assumptions and
methodologies. In this manuscript, we focus on supervised learning, which consists in inferring the relationship
between a set of predictive variables and one or multiple observed target variables.

A collection of observations (predictive variables and targets) constitutes a dataset. When dealing with very
high-dimensional datasets, practicioners often resort to models reflecting a priori knowledge about the relation-
ship between the predictive variables and the targets. An instance of such belief has been formulated in 1495 by
William of Ockham: “Plurality must never be posited without necessity”. The celebrated Ockham’s razor (also
coined law of parcimony) postulates that for two models having similar predictive power, one should retain the
simpler of the two. In all likelihood, a significant amount of predictive variables in a high dimensional dataset
can be discarded while still retaining a satisfactory predictive accuracy. For instance, not all of the 30,000 genes
in the human genome are responsible for the expression of a specific cancer type: it is likely that only a handful
of them in each chromosome are responsible for the formation of cancerous cells. Figure 1c shows that images
can be reconstructed from few coefficients in their wavelet decomposition, while still retaining the visual quality
of the original image. This sparsity assumption allows us to extract reproducible and informative patterns from
high-dimensional datasets (Hastie et al., 2015), a crucial feat at the age of big data.

(a) Original
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(b) Wavelet coefficients (c) Reconstructed

Figure 1: Wavelet decomposition and compression. Signals can often be represented combining few atoms. The
wavelet transform (Daubechies, 1992) of the image (Figure 1a) is computed. Relatively few wavelet coefficients
(Figure 1b) explain most of the image energy. Compressing the image from its 5% largest wavelet coefficients
yields Figure 1c.

Sparse generalized linear models (GLM) are a class of parametric statistical estimators enforcing sparsity. They
are widely used to solve regression and classification tasks, in scientific and business applications such as in neu-
roscience (Strohmeier et al., 2016), genomics (Ghosh and Chinnaiyan, 2005; Rapaport et al., 2008) or computer
vision (Mairal, 2010). Since their statistical properties have been extensively studied (Simon et al., 2013; Candes
et al., 2008; Zou and Hastie, 2005) and they are implemented efficiently in numerous scientific libraries in Python
with scikit-learn (Pedregosa et al., 2011), or in R with glmnet (Friedman et al., 2009) they are amongst
the most standard and widely used statistical models. They are characterized by the sparsity of their solutions, that
only have a small number of nonzero coefficients, and thus perform variable selection (Zou and Hastie, 2005).

Software implementations of these models rely on fast optimization algorithms (Fan et al., 2008; Friedman et al.,
2009; Blondel and Pedregosa, 2016). When dealing with very large datasets, fast memory-efficient solvers are cru-
cial to estimate a solution in reasonable time. They usually rely on two crucial components: a working set strategy
and acceleration. In recent years, working set solvers applied to convex problems (Johnson and Guestrin, 2015;
Massias et al., 2018; Ndiaye et al., 2020) have gained popularity to efficiently solve problems of evergrowing sizes.
Another crucial component for convex solvers is acceleration, a set of techniques improving the convergence rate.
In this manuscript, we distinguish two kinds of acceleration: inertial acceleration (Polyak, 1964; Nesterov, 1983)
and extrapolation (Anderson, 1965). Acceleration is extensively used in deep learning (Kingma and Ba, 2014;
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Ruder, 2016) and is now a standard practice for generalized linear models (Beck and Teboulle, 2009; Scieur et al.,
2016; Mai and Johansson, 2020).

There exists various classes of sparsity-inducing penalties for GLMs. Convex penalties enjoy well-studied an-
alytical properties (Bach et al., 2011), the most convenient of which is the local-to-global property, meaning that
every local minimum is global. This is why, in the wake of the seminal work of Tibshirani (1996) on the Lasso,
the `1 norm and its variations are the standard sparsity inducing penalties (Zou and Hastie, 2005; Roth and Fis-
cher, 2008; Lee et al., 2006). Nonetheless, convex penalties are limited compared to their non-convex counterparts
(Fan and Li, 2001; Zhang, 2010) that yield sparser solutions and mitigate the intrinsic bias of convex penalties
(Breheny and Huang, 2011; Soubies et al., 2015). Currently, there is no implementation equivalent to glmnet
(Friedman et al., 2009), liblinear (Fan et al., 2008) or scikit-learn (Pedregosa et al., 2011) for non-
convex penalties. Therefore, practitioners face the following trade-off: using convex estimators implemented with
fast optimization algorithms at the cost of biased and less sparse solutions, or resorting to non-convex estimators
with no off-the-shelf fast implementation.

In this work, we propose a state-of-the-art solver based on working sets and Anderson acceleration to efficiently
estimate the solutions of sparse generalized linear models. Through an extensive experimental validation, we
demonstrate its versatility and its superiority over existing methods. This algorithm is released in a professional
quality open-source library, integrated to the scikit-learn ecosystem, called skglm (Bertrand et al., 2022). With
this library1, we fully bring to practitioners the power of non-convex penalties for sparse GLMs, through an off-
the-shelf, lightning fast solver with a convenient API.

Notation

For any integer d, [d] denotes the set {1, . . . , d}. We denote by n the number of observations, by p the num-
ber of features, X = [x1|. . .|xp] ∈ Rn×p represents the design matrix, and y ∈ Rn is the observation vector. For
W ⊂ [p], and β ∈ Rp, βW is restricted to the indices inW , XW is the matrix X restricted to the columns with
indices inW . The vector 1K (resp. 0K) has K entries set to 1 (resp. 0). We denote by Sd the set of symmetric
matrices in Rd×d, and by S+

d its restriction to semi-definite positive matrices. On Sd, we use the Löwner order
defined as follows: A � B ⇐⇒ B − A ∈ S+

d . # denotes the cardinality of a set. The row-wise separable
`p,q group-norm of a matrix A is written ‖A‖p,q = (

∑
i(
∑
j A

p
i,j)

q/p)1/q . The element-wise product between two
vectors or matrices is denoted by �. For a set C, we denote ΠC the orthogonal projection onto C.

1available at https://github.com/scikit-learn-contrib/skglm.
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2 Problem formulation

2.1 Reminder on convex analysis
This manuscript is devoted to continuous finite dimensional optimization problems. In this section, we provide a
set of definitions and assumptions in order to analyze their properties. Then, a generic formulation of the problems
under scrutiny is given.

Definition 1 (Domain). Let f be an extended real-valued function f : Rd → [−∞,+∞]. The domain of f is the
set

dom(f) = {x ∈ Rd : f(x) < +∞} . (1)

The extension to infinite values is useful to transform constrained problems into unconstrained ones.

Example 2 (Indicator function of a convex set). Consider the following constrained minimization problem where
C is a subset of Rd:

min
x∈C

f(x) . (2)

Problem 2 can be reformulated as an unconstrained problem using an indicator function:

min
x∈Rd

f(x) + ιC(x) , (3)

where ιC is the indicator function of the set C, that is{
0 if x ∈ C ,

+∞ otherwise .
(4)

Definition 3 (Proper function). A function f : Rd → [−∞,+∞] is proper if its domain is non-empty and it does
not take the value −∞.

Definition 4 (Lower semicontinuous function). A function f : Rd → [−∞,+∞] is lower semicontinuous at
x0 ∈ Rd if

lim inf
x→x0

f(x) ≥ f(x0) . (5)

Proposition 5 (Characterization of lower semicontinuity, Beck (2017, Theorem 2.6)). A function f : Rd →
[−∞,+∞] is lower semicontinuous on E ⊆ Rd if and only if its epigraph on E is closed.

Definition 6 (Convex function). A function f : Rd → [−∞,+∞] is convex on E ⊆ Rd if

∀x, y ∈ E,∀t ∈ [0, 1], f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y) . (6)

Definition 7 (Coercive function). A proper function f : Rd → ]−∞,+∞] is coercive if

lim
‖x‖→∞

f(x) = +∞ . (7)

If f is proper, lower semicontinuous, convex and coercive, then the problem minx∈Rd f(x) admits at least one
minimizer (Giusti, 2003).

2.2 Problem under scrutiny
Motivated by generalized linear models but not limited to it, we study problems of the form

β̂ ∈ arg min
β∈Rp

Φ(β) , F (Xβ) + Ω(β) ,
n∑
i=1

fi(x
>
i β) +

p∑
j=1

Ωj(βj) , (8)

where all fi are convex smooth functions and the functions Ωj are proper lower semicontinuous functions not
necessarily convex nor smooth. The penalty Ω =

∑
j Ωj is separable2 and penalizes an overly complex solution

β̂. Maximum likelihood estimation of sparse generalized linear models yields problems of the form of Problem 8
(Hastie et al., 2015). However, it is worth noting that this form of problem is not restricted to generalized linear
models; the regression with Huber loss (Huber, 1981) has a similar formulation but is not a generalized linear
model. This problem formulation encompasses regression and classification models such as Lasso (Tibshirani,
1996), ElasticNet (Zou and Hastie, 2005), Group Lasso (Simon et al., 2013), sparse Logistic Regression (Lee
et al., 2006) or the dual SVM with hinge loss (see Appendix A). All fall into the class of “smooth + non-smooth
separable” problems.

2We handle the case of block-separable penalties later in the manuscript.
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Example 8 (Lasso, Tibshirani (1996)). For instance, for a regression task, let F (·) = 1
2n ‖y − ·‖

2
2 be the quadratic

datafit and Ωj(·) = λ |·| with λ > 0 a regularization hyperparameter. Plugging these two terms in Problem 8 yields
the Lasso (Tibshirani, 1996)

β̂ ∈ arg min
β∈Rp

1

2n
‖y −Xβ‖22 + λ

p∑
j=1

|βj | . (9)

Example 9 (Sparse logistic regression). Likewise, for y ∈ {−1, 1}n, let F (·) = 1
n

∑n
i=1 log(1 + exp(−· yi)) and

Ωj(·) = λ |·|, plugging them in Problem 8 yields the sparse logistic regression

β̂ ∈ arg min
β∈Rp

1

n

n∑
i=1

log(1 + exp(−yiβ>Xi,:)) + λ

p∑
j=1

|βj | . (10)

Finally, we add two regularity assumptions on the datafit term F .

Assumption 10 (Lipschitz gradients). A convex differentiable function F : Rn → R has Lipschitz gradients if
there exists L ∈ [0,+∞[ such that

∀x, y ∈ Rn, ‖∇F (x)−∇F (y)‖ ≤ L ‖x− y‖ . (11)

A function is said to be smooth if it has Lipschitz gradients.

Assumption 11 (Strong convexity). Let F : Rn → ]−∞,+∞] be a function. F is µ-strongly convex for a given
µ > 0 if dom(f) is convex and the following inequality holds for any x, y ∈ dom f and t ∈ [0, 1]:

F (tx+ (1− t)y) ≤ tF (x) + (1− t)F (y)− µ

2
t(1− t)‖x− y‖2 . (12)

These two assumptions are central in the derivation of convergence rates. When F is differentiable or twice-
differentiable, several useful properties can be deduced from Assumptions 10 and 11. These properties are exten-
sively used in the proofs of lemmas and convergence bounds. All the proofs can be found in Beck (2017, Section
2). In the following, E is a subset of Rn, we assume F : E→ R is twice-differentiable.

Proposition 12. The following propositions are equivalent:

1. F is L-smooth on E

2. ∀x, y ∈ E, |F (y)− F (x)− 〈∇F (x), y − x〉| ≤ L
2 ‖y − x‖2

3. ∀x ∈ E, ∇2F (x) � LI

Proposition 13. The following propositions are equivalent:

1. F is µ-strongly convex on E

2. F − µ
2 ‖·‖2 is convex on E

3. ∀x, y ∈ E, F (x) ≤ F (y) + 〈∇f(x), x− y〉 − µ
2 ‖x− y‖

2

4. ∀x ∈ E, ∇2F (x) � µI

As we have formalized the class of problems under scrutiny, we now introduce the relevant tools to minimize
such objectives.
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3 First order proximal methods for convex optimization
In this section, we introduce the optimization tools to estimate the parameters of convex sparse generalized linear
models. We introduce the necessary mathematical tools needed to minimize specific non-smooth functions, then
review algorithms to estimate the solutions of sparse generalized linear models.

3.1 Sparsity and non-smooth optimization
When the number of features is larger than the number of samples, there are infinitely many solutions that verify
Xβ + ε = y with ε a random Gaussian vector. A classical way to select a relevant subset of solutions consists in
using estimators based on the `0-norm. The `0-norm is defined by

‖β‖0 = #{βj : βj 6= 0, j = 1, . . . , p} . (13)

When the solution is expected a priori to have at most k ∈ N∗ non-zero coefficients, the problem reads

β̂ ∈ arg min
β∈Rp

1

2
‖y −Xβ‖22 s.t. ‖β‖0 ≤ k . (14)

When no sparsity prior k ∈ N∗ is known, Problem 14 is formulated in a penalized form

β̂ ∈ arg min
β∈Rp

1

2
‖y −Xβ‖22 + λ‖β‖0 , (15)

with λ > 0 a regularization hyperparameter. However, Problem 15 is a combinatorial non-convex NP-hard problem
(Natarajan, 1995; Davis et al., 1997), such that one must look for solvable alternatives. Every `q-quasinorm3 where
0 ≤ q < 1 induces sparsity while being non-convex. The `1-norm is the only one creating a convex optimization
problem (Bach et al., 2011): it is the tightest convex relation of the `0-norm on the `∞ unit ball. Then the relaxed
problem reads

β̂ ∈ arg min
β∈Rp

1

2
‖y −Xβ‖22 + λ‖β‖1 . (16)

Problem 16 is called the Lasso (Tibshirani, 1996) in machine learning, but `1-regularization is also used in signal
processing for signal denoising (Chen and Donoho, 1994). As shown in Figure 2, the constraint region for the
`1-norm is a diamond, while it is a disk for the `2-norm. The solution of Problem 16 lies on the point β∗ where the
elliptical contours of the datafit term hit the constraint region of the penalty term. In higher-dimensional spaces, the
diamond becomes a rhomboid and has many corners and flat edges, which makes it more likely for the coefficients
to be zero (Bach et al., 2011; Iutzeler and Malick, 2020). This sparsity assumption results in the non-smoothness
of the penalty. In order to obtain sparse solutions, the penalty term must be non-differentiable along the axes
(Soubies, 2016, Remark 12.8).

β∗

β2

β1

(a) `1-norm.

β2

β1

β∗

(b) `2-norm.

Figure 2: Sparsity-inducing norms. Contour plot of the unregularized datafit along with the constraint region in
red for the `2-norm and `1-norm. The optimal solution is denoted as β∗.

3A quasinorm satistifies the norm axioms, except that the triangle inequality is replaced by ‖x+ y‖ ≤ K(‖x‖+ ‖y‖) for some K > 0.
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q = 0.5 q = 1 q = 2 q = 4

Figure 3: Contour plots of `q penalties. Unit ball of ‖·‖q for various values of q.

Proposition 14. The `1-norm is non-differentiable along the axes.

Proof. Let (e1, . . . , ed) be the canonical basis of Rd. Suppose there exists a derivative of ‖·‖1 at ei in the direction
of ej . Then there exists a differential operator D such that

lim
t→0

‖ei + tej‖ − ‖ei‖ −D(tej)

‖tej‖
= lim
t→0

1 + |t| − 1− tD(ej)

|t| = 0 ,

or equivalently,

lim
t→0

−tD(ej)

|t| = −1 .

This leads to a contradiction since it cannot hold for any value of D(ej).

In Figure 3, the corners of the `0.5 and `1 penalties describe the sparsity-inducing behavior of these penalties.

Proposition 14 prevents the use of standard gradient descent methods and requires the introduction of a new set of
tools suited for non-smooth optimization.

3.1.1 Subgradients and the subdifferential

Definition 15 (Subgradient and subdifferential). Let f : Rd → R be a convex function and x ∈ Rd. A subgradient
of f at x is a vector z ∈ Rd that satisfies:

∀x′ ∈ Rd, f(x) + z>(x′ − x) ≤ f(x′) . (17)

The set of all subgradients of f at x is called the subdifferential ∂f(x) of f at x (Moreau, 1965), and has a clear
geometric interpretation: it is the set of slopes of all exact affine minorants at a point x ∈ Rd to the graph of the
function f .

Theorem 16 (Subdifferential at a differentiable point, Beck (2017, Theorem 3.33)). Let f : Rd → ]−∞,+∞] be a
proper convex function, and let x ∈ int(dom(f)). If f is differentiable at x, then ∂f(x) = {∇f(x)}. Conversely,
if f has a unique subgradient at x, then it is differentiable at x and ∂f(x) = {∇f(x)}.

Theorem 17 (Fermat’s rule, Bauschke and Combettes (2017, Theorem 16.3)). Let f : Rd → R be a convex
function. x∗ is a minimizer of f if and only if

0 ∈ ∂f(x∗) . (18)

Proof. Let x ∈ Rd. x ∈ arg min f ⇐⇒ ∀x′ ∈ Rd, f(x) + 〈x′ − x, 0〉 ≤ f(x′) ⇐⇒ 0 ∈ ∂f(x).

A useful concept tightly coupled with subgradients is dual norms.

Definition 18 (Dual norm). The dual norm Ω∗ of the norm Ω in Rd is defined for any vector z ∈ Rd by

Ω∗(z) = max
x∈Rd

z>x s.t. Ω(x) ≤ 1 . (19)

A well-known result in optimization is that the dual norm of the `q-norm, for q ∈ [1,+∞], is the `q′ -norm,
with q′ ∈ [1,+∞] such that 1

q + 1
q′ = 1 (Bach et al., 2011, Section 1.4.2). In particular, the `2-norm is self-dual

and the dual norm of the `1-norm is the `∞-norm.
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Theorem 19 (Subdifferential of a norm, Bach et al. (2011, Proposition 1.2)). Let Ω be a norm on Rd, and x ∈ Rd.
The subdifferential of Ω at x is

∂Ω(x) =

{
{z ∈ Rd : Ω∗(z) ≤ 1} if x = 0 ,

{z ∈ Rd : Ω∗(z) = 1 and z>x = Ω(x)} otherwise .
(20)

where Ω∗ is the dual norm of Ω.

Example 20 (`1-norm). Applying Theorem 19 to the `1-norm in Rd yields

∂ ‖·‖1 (0) = [−1, 1]d . (21)

When d = 1, the subdifferential at 0 reads ∂ |·| (0) = [−1, 1] and contains every line with a slope in [−1, 1] that
are tangent to the graph of the norm at 0 as shown in Figure 4.

|x| Exact affine minorants

−2 −1 0 1 2

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

Figure 4: Subgradient of `1-norm. The subgradients of the absolute value at 0 are the slopes of the affine
minorants of the function that are exact at 0.

3.1.2 Proximal operators

In addition to subgradients and subdifferentials, another fundamental tool for non-smooth optimization is proximal
operators.

Definition 21 (Infimal convolution). Let f1 and f2 be functions from Rd to [−∞,+∞]. The infimal convolution
of f1 and f2 at x ∈ Rd is

(f1�f2)(x) = inf
(u1,u2)∈Rd×Rd

{f1(u1) + f2(u2) : u1 + u2 = x} = inf
u∈Rd
{f1(u) + f2(x− u)} . (22)

It can be used to construct a smooth approximation of any function f (Beck and Teboulle, 2012). Indeed, by
computing the infimal convolution of a function f with the squared norm ‖·‖2, one obtains a smoothed approxima-
tion of f . This specific smoothed approximation is called the Moreau envelope (Moreau, 1965) or Moreau-Yosida
regularization.

Definition 22 (Moreau envelope). Let f : Rd → [−∞,+∞] be a closed proper convex function, and λ > 0. The
Moreau envelope of f with parameter λ reads

Mλ
f (v) = inf

x

(
f(x) +

1

2λ
‖x− v‖22

)
. (23)

The Moreau envelope gives a smooth approximation of f when f is not smooth, it is defined on Rd even when
f is not and it is continuously differentiable everywhere. Besides, the set of minimizers of Mλ

f is the same as λf .
Therefore, minimizing λf and Mλ

f is equivalent. Yet, the smoothness of Mλ
f makes this optimization problem

easier to solve. The unique point that minimizes the Moreau envelope of λf is called the proximal operator of f .

Definition 23 (Proximal operator). Let f : Rd → [−∞,+∞] be a closed proper convex function. The proximal
operator proxf : Rd → Rd of f at level λ > 0 is defined by

proxλf (v) = arg min
x

(
f(x) +

1

2λ
‖x− v‖22

)
. (24)
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Figure 5: Moreau envelope and proximal operator of `1 norm. The Moreau envelope of the `1-norm is the
Huber loss. The proximal operator of the `1-norm is the soft-thresholding operator.

It is unique since f is proper and the argument in the arg min is strongly convex. The proximal operator
proxλf is a trade-off between being close to v and minimizing f . The proximal operator is usually parametrized
by λ > 0 which can be interpreted as a relative weight between these two terms. Section 3.1.2 shows that the 1-
dimensional Huber loss is a smooth approximation of the absolute value. We plot along this smooth approximation
the proximal operator minimizing this smooth approximation. The connection between the proximal operator of
λf and its Moreau envelope is clear:

Mλ
f (x) = f(proxλf (x)) +

1

2λ
‖x− proxλf (x)‖22 . (25)

Using Danskin’s theorem (Danskin, 1967) on the Moreau envelope, it follows

proxλf (x) = x− λ∇Mλ
f (x) , (26)

which highlights that proxλf is a gradient step of size λ to minimize the Moreau envelope of f at level λ. The
following theorem gives a natural link between proximal operators and fixed point theory.

Theorem 24 (Minimizer and fixed points, Bauschke and Combettes (2017, Corollary 6.40)). Let f : Rd →
[−∞,+∞] be a closed proper convex function. The point x∗ ∈ arg minx∈Rd f(x) if and only if

proxf (x∗) = x∗ . (27)

Many sparsity-inducing penalties admit a closed-form proximal operator, which makes them usable in opti-
mization algorithms. As an example, we derive the well-know soft-thresholding operator (Daubechies et al., 2003)
for the `1-norm.

Example 25 (Soft-thresholding). Let f(x) = λ‖x‖1 =
∑d
i=1 λ|xi|, x ∈ Rd, λ > 0. This penalty is separable.

Let fi(xi) = λ|xi|. The proximal operator of fi reads

proxfi(xi) = arg min
u

(
λ|u|+ 1

2
(u− xi)2

)
= arg min

u

{
λu+ 1

2 (u− xi)2 if u ≥ 0 ,

−λu+ 1
2 (u− xi)2 otherwise .

In the first case, the minimum is attained in R+. Taking the derivative of hi(u) , λu+ 1
2 (u− xi)2, it follows that

at the minimum, u = xi − λ. Therefore if xi ≥ λ, proxfi(xi) = xi − λ. Using the same reasoning in the second
case, it follows that u = λ + xi. If xi ≤ −λ, proxfi(xi) = λ + xi. There remains the case where xi ∈ [−λ, λ].
We know that the `1-norm is convex and that its minimum exists, therefore if this minimum is not attained at a
point of differentiability it must be attained at a point of non-differentiability, that is 0. Finally,

proxfi(xi) =


xi − λ if xi ≥ λ ,

xi + λ if xi ≤ −λ ,

0 otherwise ,
(28)
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which can be compactly written proxfi(xi) = [|xi| − λ]+ sgn(xi). In a vectorial form, and applying proximal
calculus rules, we obtain the soft-thresholding operator

proxf (x) , Tλ(x) = [|x| − λ1d]+ � sgn(x) . (29)

Table 1 summarizes the proximal operators used for some usual sparsity-inducing penalties.

Table 1: Proximal operators for convex sparse penalties.

Model Penalty f(β) proxf

Lasso `1 λ‖β‖1 [|β| − λ1p]+ � sgn(β)

Group Lasso `2,1 λ
∑
g∈G‖βg‖2

(
1− λ

max(‖βg‖2,λ)

)
βg

Multi-task Lasso L2,1 λ‖B‖2,1
(

1− λ
max(‖B:t‖2,λ)

)
B:t

Elastic Net `1 + `2 λ(γ‖β‖1 + 1−γ
2 ‖β‖22) [|β| − γλ1p]+ �

sgn(β)
1+λ(1−γ)

Dual SVM ι[0,C] ι[0,C](β) Π[0,C](β)

3.1.3 Duality and conjugation

Duality theory offers complementary perspectives on convex optimization problems. There exists multiple kinds of
duality theory including Lagrange (Boyd and Vandenberghe, 2004) and Fenchel-Rockafellar (Rockafellar, 1970).
Although Lagrange duality is more general, Fenchel-Rockafellar duality is tailored for problems of the form of
Problem 8.

Definition 26 (Fenchel conjugate). For a function f : Rd → [−∞,+∞], its Fenchel conjugate is the function
f? : Rd → [−∞,+∞]

f?(y) = sup
x∈dom(f)

(
y>x− f(x)

)
. (30)

The Fenchel conjugate is a tool that naturally arises in duality theory. The conjugate f? is always a convex
function as the pointwise supremum of convex (affine) functions.

Example 27 (Fenchel conjugate of a norm, Bach et al. (2011, Proposition 1.4)). Let Ω be a norm on Rp. The
Fenchel conjugate of Ω is the indicator function of the unit ball associated to its dual norm Ω∗.

sup
β∈Rp

(
z>β − Ω(β)

)
= ιΩ∗(β) =

{
0 if Ω∗(z) ≤ 1 ,

+∞ otherwise .
(31)

Theorem 28 (Fenchel-Young inequality, Beck (2017, Theorem 4.6)). Let f be a proper convex function on Rp.
Let β ∈ Rp and z ∈ Rp. Then,

f(β) + f?(z) ≥ β>z (32)

with equality if and only if z ∈ ∂f(β).

Theorem 29 (Fenchel-Rockafellar duality, Bauschke and Combettes (2017, Definition 15.19)). Let X ∈ Rn×p
be a linear operator. Let f : Rn → ]−∞,+∞] and g : Rp → [−∞,+∞] be convex functions. Consider the
following primal problem

p∗ , inf
β∈Rp

f(Xβ) + g(β) . (33)

Then the dual problem of Problem 33 reads

d∗ , sup
θ∈Rn

−f?(θ)− g?(−X>θ) , (34)

where f? (respectively g?) is the Fenchel conjugate of f (respectively g).
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By Fenchel-Young inequality, it is clear that the primal is lower-bounded by the dual.

Proposition 30 (Weak duality, Bauschke and Combettes (2017, Proposition 15.18)). The primal is always lower-
bounded by the dual, that is

p∗ ≥ d∗ . (35)

Strong duality. Based on Proposition 30, we define the duality gap G∗ := p∗ − d∗ ≥ 0, holding at the
optimum. For convex optimization problems, the duality gap can be null under a constraint qualification condition,
a situation called strong duality Boyd and Vandenberghe (2004, Paragraph 5.3.2). For many sparse GLMs, strong
duality holds making the lower bound tight. Practically speaking, strong duality implies that there are arbitrarily
good certificates of suboptimality. This observation can be used heuristically to provide a stopping criterion to
optimization algorithms. Given a tolerance ε > 0, if at iteration k one can construct a dual feasible point θ(k) ∈ Rn
such that the suboptimality gap G(β(k), θ(k)) ≤ ε, then β(k) ∈ Rp is guaranteed to be ε-suboptimal.

Example 31 (Lasso dual). The primal problem of the Lasso reads

min
β∈Rp

1

2
‖y −Xβ‖22 + λ‖β‖1 , (36)

and its dual problem is

max
θ∈∆X

1

2
‖y‖22 −

1

2
‖θ + y‖22 s.t. ∆X , {θ ∈ Rn : ‖X>θ‖∞ ≤ λ} . (37)

Proof. Let f(u) , 1
2‖y − u‖22 and ψ(u) , 1

2‖u‖22. We refer to Beck (2017, Section 4.3) for a comprehensive
review of calculus rules associated to Fenchel conjugates. Using the fact that ψ is self-conjugate and that f(u) =
ψ(y − u), it follows that

f∗(u) =
1

2
‖u‖22 + 〈u, y〉 = −1

2
‖y‖22 +

1

2
‖u+ y‖22 . (38)

Besides, g(u) , λ‖u‖1. Using Example 27, it follows that

g∗(u) =

{
0 if ‖u‖∞ ≤ λ ,

∞ otherwise .
(39)

Now, applying Theorem 29, and using a slight abuse of notation for the supremum, we obtain the desired result.

Table 2: Primal and dual problems for sparse generalized linear models.

Model Primal Dual

Lasso min
β∈Rp

1

2
‖y −Xβ‖22 + λ‖β‖1 max

θ∈∆X

1

2
‖y‖22 −

1

2
‖θ + y‖22

s.t. ∆X = {θ ∈ Rn : ‖X>θ‖∞ ≤ λ}

Group Lasso min
β∈Rp

1

2
‖y −Xβ‖22 + λ

∑
g∈G
‖βg‖2 max

θ∈∆X

1

2
‖y‖22 −

1

2
‖θ + y‖22

s.t. ∆X = {θ ∈ Rn : max
g∈G
‖X>g θ‖2 ≤ λ}

Multi-task Lasso min
B∈Rp×T

1

2
‖Y −XB‖2F + λ‖B‖2,1 max

Θ∈∆X

1

2
‖Y‖2F −

1

2
‖Θ + Y‖2F

s.t. ∆X = {Θ ∈ Rn×T : ‖X>Θ‖2,∞ ≤ λ}

Elastic Net min
β∈Rp

1

2
‖y −Xβ‖22 + λ

(
γ‖β‖1 +

1− γ
2
‖β‖22

)
max
θ∈∆X

−1

2

(
1 +

1

λ(1− γ)

)
‖θ‖22 − 〈θ, y〉

s.t. ∆X = {θ ∈ Rn : ‖X>θ‖∞ ≤ λγ}

Logistic Regression min
β∈Rp

n∑
i=1

log(1 + exp(−yiX>i,:β)) + λ‖β‖1
min
θ∈∆X

n∑
i=1

θi log(θi) + (1− θi) log(1− θi)

s.t.

{
∆X = {θ ∈ Rn : ‖X>θ‖∞ ≤ λ}
∀i ∈ [n], 0 ≤ θi ≤ 1
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3.2 First-order methods for non-smooth optimization
As we are now equipped with the right tools to tackle non-smooth optimization, we move on to first-order methods.
We begin this section with some theoretical results on the descent lemma. Then, we present some of the most
efficient first-order methods to solve sparse generalized linear models and derive their convergence rates.

3.2.1 Lipschitz gradients and descent lemma

Gradient descent is an iterative scheme used to solve minimization problems. Since the gradient gives the direction
of the steepest increase in value, a natural approach consists in taking a step in the opposite direction of the gradient.

Definition 32 (Gradient descent). Let f : Rd → R be a differentiable function with L-Lipschitz gradients. The
gradient descent method generates iterates (xk)k defined in Rd by the relationship

xk+1 = xk − ηk∇f(xk) , (40)

where (ηk)k is a sequence of step sizes.

We shall see that these step sizes are crucial for the convergence speed of first-order methods. In this subsection,
we present the majorization-minimization framework and prove the convergence of gradient descent for L-smooth
functions. Starting from Assumption 10, we derive a quadratic upper bound for a L-smooth function.

Theorem 33 (Descent lemma). Let f : Rd → R be a convex L-smooth function with L > 0. A gradient descent
iterate scheme with 1

L step sizes yields

f(xk+1) ≤ f(xk)− 1

2L
‖∇f(xk)‖22 . (41)

Proof. For x, y ∈ Rd, using the fundamental theorem of calculus,

f(y) = f(x) +

∫ 1

0

〈∇f(x+ t(y − x)), y − x〉dt . (42)

It follows that

|f(y)− f(x)− 〈∇f(x), y − x〉| =
∣∣∣∣∫ 1

0

〈∇f(x+ t(y − x))−∇f(x), y − x〉dt
∣∣∣∣

≤
∫ 1

0

|〈∇f(x+ t(y − x))−∇f(x), y − x〉|dt by Jensen’s inequality,

≤
∫ 1

0

‖∇f(x+ t(y − x))−∇f(x)‖2 ‖y − x‖2 dt by Cauchy-Schwarz inequality,

≤ L
∫ 1

0

t ‖x− y‖22 dt by L-smoothness,

≤ L

2
‖x− y‖22 .

Since f is convex, it lies above its tangents and we obtain a quadratic upper bound for f

∀x, y ∈ Rd, f(y) ≤ f(x) + 〈∇f(x), y − x〉+
L

2
‖x− y‖22 . (43)

Note that this upper bound can be interpreted as a quadratic approximation of f . It is very close to a Taylor
expansion except that ∇2f(x) is replaced by an isotropic matrix LIn. Equation (43) upper-bounds f as shown in
Figure 6. Using Equation (43), we can now plug the gradient descent update rule xk+1 = xk − 1

L∇f(xk) with
y = xk+1 and x = xk

f(xk+1) ≤ f(xk) + 〈∇f(xk),− 1

L
∇f(xk)〉+

L

2

∥∥∥∥ 1

L
∇f(xk)

∥∥∥∥2

2

≤ f(xk)− 1

2L
‖∇f(xk)‖22 .
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(a) Step 1. (b) Step 2. (c) Step 3.

Figure 6: Majorization-minimization framework. Majorize with a quadratic upper bound, minimize this bound
and perform the update. Courtesy from Salmon.

We obtain a theoretical guarantee of minimization of the objective function for gradient descent. This lemma
implies that every time a gradient descent update is performed, the objective function f decreases by at least
1

2L ‖∇f(xk)‖22.

Majorization-minimization (MM) is a useful framework to visualize how gradient descent converges to an op-
timum (Figure 6). MM consists in iteratively minimizing at step k a surrogate majorizing function g(·|xk) that
satisfies {

∀x ∈ Rd, f(x) ≤ g(x|xk) : domination / upper bound ,
f(xk) = g(xk|xk) : tangency / tightness at xk .

(44)

For functions with L-Lipschitz gradients, the upper bound is given by Equation (43). Taking the gradient of
g(x|xk) = f(xk) + 〈∇f(xk), x − xk〉 + L

2 ‖xk − x‖
2
2, finding a critical point of g and reorganizing yields the

update rule

xk+1 = xk −
1

L
∇f(xk) . (45)

This update rule makes it clear why the Lipschitz constant is ubiquitous when minimizing a L-smooth function: it
is the optimal step size to minimize in one step the quadratic upper bound of f .

3.2.2 Proximal gradient descent

The previous section introduces the majorization-minimization framework in the context of smooth functions. For
sparsity-inducing penalties which create non-smooth optimization problems, one needs to come up with a variant
of gradient descent to successfully minimize a function. Going back to a problem of the form of Problem 8, F
is assumed convex, L-smooth and Ω is convex but non-smooth. Since F is L-smooth, using the quadratic upper
bound Equation (43) for Problem 8 yields a possible choice:

∀y ∈ Rd, g(y|βk) = F (βk) + 〈∇F (βk), y − βk〉+
L

2
‖y − βk‖22 + Ω(y) . (46)

Using Equation (45), the minimizer of the quadratic upper bound of F is a proximal gradient step of size 1
L :

βk+1 = arg min
y∈Rd

(
F (βk) + 〈∇F (βk), y − βk〉+

L

2
‖y − βk‖22 + Ω(y)

)

= arg min
y∈Rd

(
Ω(y) +

L

2

∥∥∥∥y − (βk − 1

L
∇f(βk)

)∥∥∥∥2

2

)

= prox Ω
L

(
βk −

1

L
∇f(βk)

)
.

For most well-known problems, the proximal operator has a closed-form which usually makes it cheap to evaluate.
For instance, combining the soft thresholding operator Equation (29) with proximal gradient descent yields the
celebrated iterative soft-thresholding algorithm (ISTA, Daubechies et al. (2003)) used to minimize a `1-regularized
problem.
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A central question for descent algorithms solving sparse GLM optimization problems is the identification of the
support in finite time. Remember that sparse models generate solutions living in lower-dimensional spaces than
the original feature space: a sparse logistic regression model or a Lasso model generates solutions having few
non-zero coefficients.

Definition 34 (Generalized support, Nutini et al. (2019)). For a penalty function gj , j ∈ [p] and a vector β ∈ Rp,
its generalized support Sβ ⊆ [p] is the set of indices j ∈ [p] such that gj is differentiable at βj

Sβ = {j ∈ [p] : ∂gj(βj) is a singleton} . (47)

For the `1-norm, the support corresponds to the set of non-zero coefficients. For the dual SVM with Hinge
loss (see Appendix A), it corresponds to the set of indices such that βj ∈ ]0, C[. The model identification question
consists in asking if there exists a number of steps K > 0 at which Sβ(K) ⊆ Sβ̂ . This property is crucial to ensure
that true null coefficients eventually vanish after a finite number of steps.

Convergence rate. We give a simple proof of the convergence rate of (proximal) gradient descent. Note that
proximal gradient descent and gradient descent have the same convergence rate, the main difference lying in the
additional overhead of evaluating the proximal operator. These proofs are established using ordinary differential
equation (ODE) theory. The connection between ODEs and optimization has been established by taking infinitesi-
mal step sizes such that the trajectory taken by gradient descent iterates converges to a curve modeled by an ODE.
Lyapunov functions are important functions in the theory of ODEs to prove the stability of an equilibrium of an
ODE. They are used by d’Aspremont et al. (2021) or Bansal and Gupta (2017) to derive the convergence rates of
gradient descent in various settings.

Definition 35 (Lyapunov potential). Let f be a convex function over Rd and β? ∈ arg minβ f(β). The Lyapunov
potential (or energy) associated to f given ak ≥ 0 is the sequence (φk)k defined by

φk , ak(f(βk)− f(β∗)) +
L

2
‖βk − β∗‖22 . (48)

Theorem 36 (Potential inequality, d’Aspremont et al. (2021, Theorem 4.2)). Let f be an L-smooth convex function,
β∗ ∈ arg minβ f(β), and k ∈ N. Using the sequence of descent iterates (βk)k, it holds that φk+1 ≤ φk, with
βk+1 = βk − 1

L∇f(βk) and ak+1 = 1 + ak.

Using Theorem 36 with ak = k, it follows that

N(f(βN )− f(β∗)) ≤ φN ≤ φN−1 ≤ · · · ≤ φ0 =
L

2
‖β0 − β∗‖22 , (49)

which yields

f(βN )− f(β∗) ≤ L‖β0 − β∗‖22
2N

. (50)

This implies that proximal gradient descent has a convergence rate O(1/N), with N the number of iterations,
or equivalently that at most O(1/ε) iterations are needed to obtain an ε-suboptimal solution.

Now, we add Assumption 11 on the objective function: f is µ-strongly convex (µ > 0). Again, potential
functions prove to be very useful tools to derive this convergence rate. This time, for ak ≥ 0, let φk ,
ak(f(βk)− f(β∗)) + L+µak

2 ‖βk − β∗‖22.

Theorem 37 (Potential inequality µ-convex, d’Aspremont et al. (2021, Theorem 4.10)). Let f be an L-smooth
µ-strongly convex function, β∗ ∈ arg minβ f(β), and k ∈ N. For a sequence of descent iterates (βk)k, it holds
that φk+1 ≤ φk, with βk+1 = βk − 1

L∇f(βk) and ak+1 = 1+ak
1− µL

.

Following the same argument as previously, we obtain the following convergence rate for a fixed step size 1
L ,

f(βN )− f(β∗) ≤ µ‖β0 − β∗‖22
2((1− µ/L)−N − 1)

, (51)

which implies that proximal gradient descent has a convergence rate O(log 1/ε) for an ε-suboptimal solution.
Adding strong convexity essentially shows that the convergence is much faster because the function cannot get too
flat, since it is lower bounded by parabolas.
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3.2.3 Coordinate descent

We end the review of optimization algorithms by studying coordinate descent (Luo and Tseng, 1992). The central
idea in coordinate descent is to solve coordinate-wise simple subproblems iteratively until convergence. Denoting
Φ : Rp → R a convex objective function of the form of Problem 8, coordinate descent successively minimize
approximately one-dimensional functions Φ|βj : R → R, updating one coordinate at a time while keeping oth-
ers unchanged. These subproblems are usually easier and cheaper to solve. Coordinate descent methods have
been extensively studied in the literature and extended to non-smooth separable problems (Richtárik and Takáăź,
2014; Fercoq and Richtárik, 2013), such as Lasso (Tibshirani, 1996) or ElasticNet (Zou and Hastie, 2005). In the
context of non-smooth optimization, a coordinate-wise proximal gradient descent is performed for every coordi-
nate at every iteration. We give below details about proximal gradient descent and proximal coordinate descent.

Algorithm 1 PROXIMAL GRADIENT DESCENT

input : niter ∈ N, β(0) ∈ Rp, L ∈ R∗
1 for k = 0, . . . , niter do
2 β(k+1) = prox g

L

(
β(k) − 1

L∇f(β(k))
)

3 return β(niter+1)

Algorithm 2 PROXIMAL COORDINATE DESCENT

input : niter ∈ N, β(0) ∈ Rp, L ∈ Rp
1 for k = 0, . . . , niter do
2 for j = 1, . . . , p do
3 β

(k+1)
j = prox gj

Lj

(
β

(k)
j − 1

Lj
∇jf(β(k))

)
4 return β(niter+1)
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(a) Gradient descent.
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(b) Coordinate descent.

Figure 7: Contour plots of objectives and descent iterates. Gradient descent takes steps orthogonal to the level
sets of the objective (Figure 7a), while coordinate descent takes steps in the directions of the axes (Figure 7b).

The performance of coordinate descent is in part dictated by the coordinate selection strategy. Features to be
updated can be selected in different ways, which leads to the question of the most optimal strategy.

Cyclic. The most trivial strategy consists in cycling through the coordinates. At the k-th iteration, the strategy
consists in

Pick jk = (k (mod p)) + 1 . (52)

It has been explored by Tseng and Yun (2009) and theoretically analyzed by Beck et al. (2015). It is the strategy
used in practice by skglm.

Random. Another strategy consists in picking an index using a random distribution (Nesterov, 2012). The coordi-
nates are then drawn according to a pre-defined distribution: a standard choice is to uniformly sample among the
p coordinates.

Pick jk = j with probability
1

p
, ∀j ∈ [p] . (53)
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Various experiments (Shi et al., 2016) show that the random strategy consistently underperforms cycling through
the coordinates. Nonetheless, in the worst case, Sun and Ye (2016) prove that a random strategy is better than
cycling through the entire feature set.

Greedy. Indices can be chosen according to a heuristic (Nutini et al., 2015): the index with the largest decrease
in the objective (Maximum Block Improvement, Chen et al. (2012)), with the largest gradient magnitude (Gauss-
Southwell strategy, Southwell (1941)). This strategy differs from the two other as it dynamically identifies a precise
coordinate to optimize. A comprehensive presentation of these strategies has been made by Massias (2017, Section
3.2). For a quadratic datafit, updates can be performed using a Gram matrix X>X , making the cost of updating
coordinates cheap. In this setting, speed-ups over the naı̈ve cyclic approach have been observed for Lasso-type
problems. However, for non-quadratic datafits, the Greedy approach is computationally very expensive, making it
slow.

Even though index selection strategy can reduce the number of epochs, a poor implementation of coordinate de-
scent can lead to suboptimal results. Indeed, for a quadratic datafit, a coordinate update can essentially be updated
in two fashions: updating a Gram matrix and updating the residuals. Remember a single coordinate descent update
rule for a quadratic datafit, a step size Lj = ‖X:j‖2 and a proper lower-semicontinuous penalty g reads

βj+1 = prox gj
Lj

(βj −
1

Lj
X>:j (Xβ − y)) . (54)

Residual update. The usual way of updating coordinates consists in jointly updating the residuals. The update
reads 

r ← r(k−1) +X:,jβ
(k−1)
j if β(k−1)

j 6= 0

β
(k)
j ← prox gj

Lj

( 1
Lj
X>:,jr) .

r(k) ← r −X:,jβ
(k)
j if β(k)

j 6= 0

(55)

This update is efficient when p� n.

Gradient update. The gradient update consists in observing that the gradient of a quadratic datafit relies on the
Gram matrix G = X>X . This matrix lives in Rp×p, and can provide significant speed-ups if pre-computed. In-
deed, for moderate-sized datasets (typically p ≤ 10 000), the Gram matrix fits in memory and can be pre-computed
in reasonable time. This initial cost of pre-computation is then amortized in the faster coordinate updates. Instead
of storing the residuals r ∈ Rn, the gradient∇f ∈ Rp is maintained. Then the update reads

δβ
(k)
j ← prox gj

Lj

(β
(k−1)
j − 1

Lj
∇(k−1)
j f)− β(k−1)

j

β
(k)
j ← β

(k−1)
j + δβj if δβj 6= 0 .

∇(k)f ← ∇(k−1)f +Gjδβ if δβj 6= 0

(56)

The main cost associated to this strategy is the update of the p-dimensional vector∇f . It is particularly interesting
when n � p: it is usually cheaper to store the Gram matrix than a vector of residuals and the single coordinate
update are faster. skglm embarks such a strategy for quadratic datafits when p ≤ 10 000 and n � p. A detailed
time and space analyses can be found in Massias (2017, Table 1).

3.3 Comparison of non-accelerated first-order methods
3.3.1 Experiments

We compare the performance of coordinate descent and proximal gradient descent on multiple datasets and es-
timators: the Lasso, the sparse logistic regression and the ElasticNet. The benchmark procedure is explained in
details in Appendix C and was performed using the benchmarking tool Benchopt (Moreau et al., 2022). We use
datasets from libsvm (Chang and Lin, 2011), presented in Table 3.

Parametrization. In the sparse GLM literature, the regularization hyperparameter λ ≥ 0 is usually parametrized
as a fraction of λmax, the smallest regularization value for which β̂ = 0.
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Table 3: Characteristics of the datasets.

Datasets #samples n #features p density
leukemia 38 7129 1

rcv1 20 242 19 959 3.6× 10−3

finance 16 087 4 272 227 1.4× 10−3

news20 19 996 1 355 191 3.4× 10−4
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Figure 8: Lasso. Duality gap as a function of time, on 3 different datasets: leukemia, finance and rcv1.

Lasso. Figures 8 to 10 make it clear that coordinate descent offers far better performance than proximal gradi-
ent descent. In low-regularization regime, proximal gradient descent does not converge in reasonable time. We give
an explanation of the superior performance of coordinate descent over proximal gradient descent in Section 3.3.2.
Note that on high-dimensional datasets like finance, for λ ≤ λmax

10 , coordinate descent struggles to converge. This
fact calls for acceleration techniques to ensure a faster convergence in high-dimensional settings. Such techniques
are investigated in the next section.
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Figure 9: `1-regularized logistic regression, suboptimality. Suboptimality gap as a function of time, on 2 differ-
ent datasets: leukemia and rcv1.

Sparse logistic regression. The sparse logistic regression corresponds to Problem 10.
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Proximal gradient descent Coordinate descent
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Figure 10: ElasticNet, suboptimality. Suboptimality gap as a function of time, on 3 different datasets: rcv1,
news20 and leukemia. γ = 0.7.

ElasticNet. The ElasticNet is an estimator with a quadratic datafit and a `1 + `2-regularization. For a design
matrix X ∈ Rn×p and a target vector y ∈ Rn, it is defined as

arg min
β∈Rp

1

2n
‖y −Xβ‖22 + λ

(
γ ‖β‖1 +

(1− γ)

2
‖β‖22

)
, (57)

where γ ∈ [0, 1] controls the ratio of `1-regularization compared to `2-regularization.

3.3.2 Why is coordinate descent faster than proximal gradient descent?

Proposition 38. Let f : Rp → R be a quadratic datafit and g : Rp → R be a proper lower semicontinuous
function. The step sizes { 1

Lk
: k = 1, . . . , p} associated to the coordinate descent scheme to optimize the problem

f + g are larger than the step size 1
L of the proximal gradient descent scheme associated to the same objective.

Proof. Let X ∈ Rn×p be a design matrix. ‖X:j‖ = ‖Xej‖ ≤ sup‖u‖≤1 ‖Xu‖ = ‖X‖2. Therefore, 1
‖X:,j‖22

≥
1
‖X‖22

, which shows that a CD step is larger than the generic proximal gradient descent step.

Intuitively, one could say that coordinate descent has access to more information than proximal gradient de-
scent. While proximal gradient descent has access to a step size common to all coordinates, coordinate descent
can use step sizes proportional to the steepness of the curve in every direction. To emphasize the criticality of
larger step sizes, we carry out the following experiment. We run multiple coordinate descent algorithms, each time
choosing a step size between 1

L and 1
Lj

. Figure 11 makes it clear that coordinate descent run with gradient descent
steps is as slow as gradient descent.
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Figure 11: Impact of step sizes on CD convergence speed. Duality gap as a function of time. PGD compared
to CD with step sizes γj = δ

Lj
+ 1−δ

L , for multiple values of δ. The experiment is carried out with an ordinary
least-square estimator.
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3.3.3 Condition numbers and convergence

As seen previously, the step size has a crucial impact on the convergence speed, and should be carefully adapted if
possible to ensure the fastest convergence possible. In this subsection, we focus on the quadratic datafit and give
intuition to the reader on the critical aspect of a well-conditioned problem.
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Figure 12: Impact of the condition number on coordinate descent convergence.

Proposition 39. Considering a sequence of iterates (βk)k of a (proximal) gradient descent schema, the update
rule reads

βk+1 ←
(
Ip −

1

L
X>X

)
︸ ︷︷ ︸

,TGD

βk − 1

L
X>y . (58)

Proposition 40. For a quadratic datafit, the iteration matrix TGD has a spectral radius

ρ(TGD) < 1 . (59)

Proof. By assumption, the eigenvalues of the Hessian ∇2
f = X>X are bounded above by L > 0 and below by

µ > 0. These eigenvalues are all positive since the quadratic objective is µ-strongly convex. Therefore the spectral
radius ρ(TGD) = 1− µ

L < 1 since µ
L > 0.

Therefore, the sequence
(
βk
)
k≥0

converges to a fixed point, which is a minimizer of Problem 8 (Polyak,
1987, Theorem 1, Section 2.1.2). The inverse of the condition number κ = L

µ controls the convergence speed of(
β(k)

)
k≥0

. The closer to 1, the more well-conditioned the objective function, as suggested by Figure 12.

Similar results have been proven for coordinate descent by Bertrand (2021, Lemma 1.7 and 1.8).

4 Accelerating first-order methods for faster convergence

4.1 Acceleration techniques
It is now clear why the backbone solver in skglm is coordinate descent. The experiments of Section 3.3.1 hint that
“vanilla” coordinate descent is not sufficient to ensure high performance in large dimensional settings. Acceleration
techniques have to be integrated to skglm in order to achieve state-of-the-art performance. Building on the seminal
work of Nesterov (1983), numerous acceleration techniques have been developed over the years, provably refining
convergence rates as well as providing practical speed ups. We shall differentiate two distinct kinds of acceleration:
inertial acceleration à la Nesterov and non-linear extrapolation. In this section, we identify the differences and
answer practical questions regarding the implementations of these acceleration techniques.
We first study acceleration and prove an improvement in the convergence rate of CD. Then we present screening
rules (or backward techniques) where features are progressively removed from the problem, then working set
techniques (or forward techniques) where more and more features are added to the problem. Finally, we perform an
ablation study to demonstrate the effect of each presented technique on the convergence speed of solvers addressing
convex problems.
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4.1.1 Inertial acceleration

Following the seminal work by Polyak (1964) introducing the heavy ball method (Algorithm 3), Nesterov (1983)
presented an accelerated gradient descent method achieving a O(1/N2) convergence rate. This work was further
adapted by Beck and Teboulle (2009) who presented FISTA, an accelerated optimization algorithm for non-smooth
composite problems. As for accelerated coordinate descent, inertial accelerated versions of coordinate descent
(Nesterov, 2012; Lin et al., 2014; Fercoq and Richtárik, 2013) achieve O(1/N2) rates.

Nesterov (1983) replaced the fixed inertia hyperparameter from the heavy ball method by a sequence of iterates.

Algorithm 3 HEAVY BALL METHOD, (Polyak, 1964)
input : niter ∈ N, α ∈ [0, 1], γ > 0
init : x(0) = y(0) = 0Rp

1 for k = 0, . . . , niter do
2 y(k) = x(k) + α(x(k) − x(k−1)) // Inertia

3 x(k+1) = y(k) − γ∇F (x(k))

4 return x(niter+1)

Algorithm 4 Nesterov (1983)
input : niter ∈ N, γ > 0
init : x(0) = y(0) = 0Rp , t

(1) = 1
1 for k = 0, . . . , niter do

2 t(k+1) =
1+
√

1+4(t(k))2

2

3 y(k) = x(k) + t(k)−1
t(k+1) (x(k) − x(k−1))

4 x(k+1) = y(k) − γ∇F (y(k))

5 return x(niter+1)

Example 41 (FISTA). In Section 3.2.2, we studied ISTA, a proximal descent algorithm solving a `1-regularized
optimization problem. Nesterov acceleration has been adapted to ISTA yielding FISTA (Beck and Teboulle, 2009).

Algorithm 5 FISTA (Beck and Teboulle, 2009)
input : niter ∈ N, L ∈ R∗
init : β(1) = z(1) = 0Rp , γ

(1) = 1
1 for k = 1, . . . , niter do
2 β(k+1) = prox g

L

(
z(k) − 1

L∇f(z(k))
)

3 γ(k+1) =
1+
√

1+4(γ(k))2

2

4 z(k+1) = β(k+1) + γ(k)−1
γ(k+1) (β(k+1) − β(k))

5 return β(niter+1)

Convergence rate. To motivate the choice of Nesterov accelerated gradient descent, we rely on potential
functions (Bansal and Gupta, 2017). d’Aspremont et al. (2021) starts from the following update rules

yk = xk + τk(zk − xk)

xk+1 = yk − αk∇f(yk)

zk+1 = zk − γk∇f(yk) .

(60)

Like in the proofs of convergence rate for gradient descent using potential functions, the main idea is to make ak+1

as large as possible as a function of ak. Indeed, the convergence rate of an algorithm is the inverse of the growth
rate of the sequence (ak)k. Therefore, the triplet (τk, αk, γk) must be chosen in order to maximize this growth
rate. In practice, the original Nesterov acceleration (Nesterov, 1983) implies that ak+1 = ak + 1

2 (1 +
√

4ak + 1),
yielding τk = 1− ak/ak+1, αk = 1/L and γk = (ak+1 − ak)/L.

Theorem 42 (Potential inequality, accelerated. d’Aspremont et al. (2021, Theorem 4.8)). Let f be an L-smooth
convex function, x∗ ∈ arg minx f(x), and k ∈ N. For ak ≥ 0, let φk , ak(f(xk)− f(x∗)) + L

2 ‖zk − x∗‖22. The
iterates of Algorithm 4 satisfy φk+1 ≤ φk, with ak+1 = ak + 1+

√
4ak+1
2 .

Using Theorem 42, a recursive argument gives

AN (f(xN )− f(x∗)) ≤ φN ≤ · · · ≤ φ0 =
L

2
‖x0 − x∗‖22, (61)

which yields

f(xN )− f(x∗) ≤ L‖x0 − x∗‖22
2AN

≤ 2L‖x0 − x∗‖22
N2

. (62)
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The last inequality is given by:

AN = AN−1 +
1 +

√
4AN−1 + 1

2
≥ AN−1 +

1

2
+
√
AN−1 ≥

(√
AN−1 +

1

2

)2

≥ N2

4
. (63)

Finally, let’s add the µ-convexity assumption with µ > 0 on the L-smooth function f .

Theorem 43 (Potential inequality with µ-convexity, accelerated. d’Aspremont et al. (2021, Theorem 4.12)). Let
f be an L-smooth µ-strongly convex function, x∗ = arg minx f(x), and k ∈ N. For ak ≥ 0, let the potential
function be φk , ak(f(xk) − f(x∗)) + L+µak

2 ‖zk − x∗‖22. For a sequence of iterates (xk)k, (zk)k ∈ Rd, the

iterates of Algorithm 4 satisfy φk+1 ≤ φk, with ak+1 =
2ak+1+

√
4ak+4qa2

k+1

2(1−q) and q = µ
L . The accelerated descent

method gives the following convergence rate

f(xN )− f(x∗) ≤ min

(
2

N2
,

(
1−

√
µ

L

)N)
L‖x0 − x∗‖22 . (64)

4.1.2 Non-linear extrapolation

As seen in the previous subsection, Nesterov acceleration enjoys improved convergence rate. However, practical
gains in speed are hard to obtain for coordinate descent (Bertrand and Massias, 2021, Appendix A.1). Therefore, it
was not implemented in skglm. We focus instead on a form of non-linear extrapolation (Wynn, 1962; Smith et al.,
1987) called Anderson acceleration (Anderson (1965), AA), that is a central component of skglm performance.
This technique has been adapted to non-smooth composite problems (Zhang et al., 2018; Mai and Johansson, 2020;
Poon and Liang, 2020). It enjoys accelerated rates for quadratic datafits (Varga and Golub, 1961), but weaker
results are found for non-quadratic programming (Scieur et al., 2016). This can be explained easily. Anderson
extrapolation is designed to accelerate the convergence of sequences based on fixed point linear iterations.

Definition 44. For a sequence of iterates (xk)k in Rd, a linear fixed point iteration reads

xk+1 = Txk + b , (65)

with T ∈ Rd×d the iteration matrix and b ∈ Rd.

When (proximal) gradient descent is performed on them, quadratic functions have a linear gradient which gives
linear descent iterations (see TGD in Equation (58)). Non-quadratic objectives might not have linear descent iter-
ations because the gradient is non-linear. If the objective is smooth, local approximations have to be made with
quadratic functions. More recently, AA has been adapted by Bertrand and Massias (2021) for coordinate descent,
showing significant speed-ups in the quadratic and non-quadratic cases.

AA accelerates the convergence of fixed-point iterations. Theoretically, it guarantees a faster convergence rate
than its non-accelerated counterparts, as well as practical speed ups. These observed speed-ups are explained by
the fact that AA is memory-efficient, line search-free and does not add substantial overhead. Besides, it does not
require extensive hyperparameter fine-tuning.

Let T : Rd → Rd be a linear mapping. We consider the following fixed-point problem:

Find x ∈ Rd such that x = T (x) . (66)

AA leverages past information on the iterate structure to efficiently solve Equation (66). Given a sequence of
iterates (xn)n, AA builds xn+1 by finding the point which violates the least the fixed point equality in the subspace
spanned by the K latest iterates. More formally, if we let the extrapolated point xn+1 =

∑K
k=1 c

(n)
k xn−k be an

affine combination of the past iterates, AA seeks to find c(n) ∈ RK such that

c(n) = arg min
c>1=1

‖T (xn+1)− xn+1‖2 ,

= arg min
c>1=1

∥∥∥∥∥
K∑
k=1

ck(T (xn−k)− xn−k)

∥∥∥∥∥
2

.
(67)

By letting Un = [T (xn) − xn, . . . , T (xn−K) − xn−K ] ∈ Rd×K be the residual matrix at the n-th iteration,
Equation (67) can be compactly written

c(n) = arg min
c>1=1

‖Unc‖2 . (68)
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The problem Equation (68) has a closed-form solution which reads

c(n) =
(U>n Un)−11

1>(U>n Un)−11
. (69)

Theorem 24 gives the connection between fixed point theory and proximal gradient descent. Finding a fixed point
of proximal gradient descent is equivalent to minimizing a non-smooth optimization problem. Mai and Johansson
(2020) shows how to adapt Anderson acceleration to proximal gradient descent.

Now, we focus exclusively on extrapolated coordinate descent. Extrapolated coordinate descent can be performed
in an offline or online fashion. Offline extrapolation consists in extrapolating points with more and more iterates: K
consistently grows. On the contrary, the online variant extrapolates a point from a fixed-sized sequence of iterates.
A practical trick in the implementation of online extrapolation consists in cyclically extrapolating iterates: after
one extrapolation, K new iterates are computed before extrapolating again (see Algorithm 6).

Algorithm 6 ONLINE ACCELERATED COORDINATE DESCENT (Bertrand and Massias, 2021)

input : niter ∈ N, β(0) ∈ Rp, L ∈ Rp
1 for k = 1, . . . , niter do
2 β = β(k−1)

3 for j = 1, . . . , p do
4 β̃j = βj
5 βj = proxλgj

Lj

(βj −X>:j∇f(Xβ)/Lj)

6 Xβ+ = (βj − β̃j)X:j

7 β(k) = β // O(np)
8 if k = 0 (mod K) // O(K3 + pK2)

9 then
10 U = [β(k−K+1) − β(k−K), . . . , β(k) − β(k−1)]

11 c = (U>U)−11K/1
>
K(U>U)−11K ∈ RK

12 βe =
∑K
i=1 ciβ

(k−K+i)

13 if f(Xβe) + λg(βe) ≤ f(Xβ(k)) + λg(β(k)) then
14 β(k) = βe // guaranteed convergence

15 return β(niter)

Anderson extrapolation does not theoretically guarantee global convergence of the iterates for non-quadratic
datafits. Therefore to ensure Algorithm 6 remains a descent method, a primal decrease check has to be performed
before assigning the extrapoled point to the coefficient vector. skglm implements Algorithm 6 as is. Note that
in skglm the residual update at Line 6 can be replaced by a gradient update as explained in Section 3.2.3 when
n� p and p is of moderate size.

Convergence rate. The convergence rate varies depending on the structure of the iteration matrix T . When
T is symmetric (like for gradient descent with a quadratic datafit, see Equation (58)), Scieur (2019) proves the
following convergence rate.

Theorem 45 (Convergence rate for T symmetric, Scieur (2019)). Let the iteration matrix T be symmetric semi-
definite positive, with spectral radius ρ(T ) < 1. Let x∗ ∈ Rp be the limit of the sequence (x(k))k. Let ζ =
(1−√1− ρ)/(1 +

√
1− ρ). Then the iterates of online Anderson acceleration satisfy, with B = (Id− T )2:

‖x(k)
e-on − x∗‖B ≤

(
2ζK−1

1 + ζ2(K−1)

)k/K
‖x(0) − x∗‖B . (70)

Weaker results for T non-symmetric have been explicited by Bollapragada et al. (2018) or for T pseudo-
symmetric in the context of coordinate descent by Bertrand and Massias (2021).

4.2 Leveraging the sparse structure of the solutions leads to significant speed ups
4.2.1 Screening rules

Coordinate descent is the preferred first-order method to solve problems of the form of Problem 8 not only for its
larger step sizes but also for the tight control it offers on the variables that are optimized. However, as demon-

24



strated in Figure 18, it is not fast enough for large-sized problems like finance. An easy way to speed up solvers
consists in restraining the size of the problems solved: we could ignore zero coefficients if we identify them.
Screening procedures are methods used to reduce the dimensionality of the problem at hand (Fan and Lv, 2008).
While working sets prioritize features likely to be included in the support of the solution, screening techniques
discard irrelevant features. The safe rules introduced by El Ghaoui et al. (2011) refer to a set of rules that discard
features guaranteed to be zero at the optimum. Wang et al. (2014) adapted these set of rules in a sequential fashion,
leveraging the computation done for a previous regularization level to efficiently compute the rules at the current
level. Bonnefoy et al. (2015) elaborated dynamic safe rules, a method to screen variables before and along the iter-
ations of a descent method. Eventually, the state of the art of screening rules called gap safe rules was introduced
by Ndiaye et al. (2017), which relies on duality gap computations.

We consider a problem of the form of Problem 8 with Ω a sparsity-inducing norm on Rp, thus convex. We
suppose all fi : R → R are convex and differentiable functions with L-lipschitz gradients. The dual problem is
obtained using Theorem 29

θ̂ ∈ arg min
θ∈∆X

D(θ) , −
n∑
i=1

f∗i (−θi), (D)

s.t. ∆X = {θ ∈ Rn : Ω∗(X>θ) ≤ λ}.

Screening rules are derived from the optimality conditions defined by the convex set ∆X . A key proposition for
screening introduced by El Ghaoui et al. (2011) is the following.

Proposition 46 (Safe screening rules, El Ghaoui et al. (2011)).

∀j ∈ [p], Ω∗j (X
>θ̂) < λ⇒ β̂j = 0 . (71)

Proposition 46 allows to identify the equicorrelation set Eλ = {j ∈ [p] : Ω∗j (X
>θ̂) = λ}. This equicorrelation

set contains the non-zero coefficients in the solution of Problem 8. However, θ̂ is unknown during the optimization
procedure which makes Proposition 46 uninformative. To circumvent this issue, Fercoq et al. (2015) proposes to
elaborate a safe region R ⊂ Rn that contains θ̂. The region is considered safe if it guarantees not to wrongly
discard features. Ideally, we want to find a region such that for a large number of j ∈ [p], supθ∈R Ω∗j (X

>
:j θ) < λ,

hence for many j’s, β̂j = 0. To see practical speed gain, computing a screening rule must be efficient, that is the
computation of supθ∈R Ω∗(X>θ) must be cheap.

Definition 47 (Safe active set, Fercoq et al. (2015)). A regionR ⊂ Rn creates a safe active set A(λ)(R)

A(λ)(R) = {j ∈ [p] : sup
θ∈R

Ω∗j (X
>θ) ≥ λ} . (72)

In a sequential fashion, for nested regionsRt ⊂ Rt+1, we naturally have A(λ)(Rt) ⊂ A(λ)(Rt+1).

Various safe regions have been considered like balls (El Ghaoui et al., 2011; Ndiaye et al., 2017) or domes (Fercoq
et al., 2015). The simple choice consists in choosing a ballR , B(θ, r), with θ ∈ Rn and r > 0.

Proposition 48 (Safe sphere test, Ndiaye et al. (2017), Equation 8). The safe sphere test reads

If Ω∗(X>θ̂) + rΩ∗(X:,j) < λ, then β̂j = 0. (73)

The center of the ball must be a dual feasible point in ∆X . A simple heuristic to ensure a point is in the dual
feasible set consists in rescaling any point z ∈ Rn by the maximum of Ω∗(X>z) or λ. During the iterations of an
optimization algorithm, one has access to β(t) ∈ Rp and can create a dual feasible point by rescaling the residual
term θ(t) = ∇F (Xβ(t)) ∈ Rn. As for the radius, Theorem 49 shows the gap-based quantity that should be used
to build a safe region for any (β, θ) ∈ Rp ×∆X .

Theorem 49 (Gap safe sphere, Ndiaye et al. (2017), Thm. 6). Assuming that F has L-Lipschitz gradient, the
distance between the dual feasible solution θ̂ ∈ Rn and any point θ ∈ Rn is bounded as follows

∀(β, θ) ∈ Rp ×∆X , ‖θ̂ − θ‖2 ≤
√

2LGapλ(β, θ) . (74)

Proof. Since ∀i ∈ [n], fi have L-Lipschitz gradients, f∗i are 1
L -strongly convex (Hiriart-Urruty and Lemaréchal,

1993, Theorem 4.2.2, p.83). Therefore, the dual function D is 1
L -strongly concave:

∀(θ1, θ2) ∈ Rn × Rn, D(θ2) ≤ D(θ1) + 〈∇D(θ1), θ2 − θ1〉 −
1

2L
‖θ1 − θ2‖22 . (75)
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Now, plugging θ1 = θ̂ and θ2 = θ ∈ ∆X , it follows

D(θ) ≤ D(θ̂) + 〈∇D(θ̂), θ − θ̂〉 − 1

2L
‖θ̂ − θ‖22 . (76)

Since θ̂ maximizes D on ∆X , 〈∇D(θ̂), θ − θ̂〉 ≤ 0, then

D(θ) ≤ D(θ̂)− 1

2L
‖θ̂ − θ‖22 . (77)

By weak duality, ∀β ∈ Rp,D(θ̂) ≤ P(β), hence

∀(β, θ) ∈ Rp ×∆X , D(θ) ≤ P(β)− 1

2L
‖θ̂ − θ‖22 , (78)

and by reorganizing
∀(β, θ) ∈ Rp ×∆X , ‖θ̂ − θ‖2 ≤

√
2LGapλ(β, θ) . (79)

Figure 13: Safe sphere region. The safe
sphere region R ⊂ Rn is a ball of center
θ = ∇F (Xβ)/max(1, X>∇F (Xβ)/λ) and ra-
dius r =

√
2LGapλ(β, θ). The dual feasible so-

lution θ̂ is in the safe region R. The center θ is
obtained by rescaling ∇F (Xβ) to make it live in
∆X .

Example 50 (Lasso). Adapting Proposition 48 to the `1-norm, the quantity to monitor is

dj =
∣∣∣X>:j θ̂∣∣∣+ ‖X:,j‖2

√
2LGapλ(β, θ) . (80)

For all j ∈ [p], if dj < 1, β̂j = 0.

Screening rules provide great speedups, in particular when applied sequentially to evaluate a regularization
path. However, in order for the screening rules to be informative, one needs to wait for the gap to be small. The
initial screening made with large gaps create uninformative regions which waste computations in the beginning.
Furthermore, as we shall see in Section 5, screening rules are unavailable in a non-convex regime. They are not
used in skglm.

4.2.2 Working set

An alternative to avoid wasting early computations on useless features is to solve a series of growing subproblems.
This idea has been adapted to SVM (Joachims, 1999; Fan et al., 2008) and is suited for sparse generalized linear
models (Johnson and Guestrin, 2015). Working-set algorithms are algorithms addressing optimization problems
by solving a series of smaller subproblems, which are cheaper to solve than the entire problem at once. More
formally, letW be the working set, that is the set of variables involved in the optimization of these subproblems.
Working set consists in solving subproblems of the form

min
β∈Rp

f(Xβ) + λΩ(β) s.t. βWC = 0 , (81)

that is Problem 8 has to be solved with the additional constraint that every feature that is not in the working set
should have a corresponding zero coefficient. This idea is ubiquitous in the literature (Roth and Fischer, 2008;
Kowalski et al., 2011; Tibshirani et al., 2012; Massias, 2017) and has been adapted in numerous packages. The
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R GLMNET package, Blitz (Johnson and Guestrin, 2015) or more recently Celer (Massias et al., 2018) and
skglm (Bertrand et al., 2022) all use working set strategies.

Inner and outer solvers. We call inner-loop problem Problem 81. This problem is solved in skglm using
proximal coordinate descent as introduced in Algorithm 2 and Anderson acceleration (see Section 4.1.2). We refer
to outer-loop problem the problem which consists in adding features to the working set. Note that since solutions to
successive inner-loop problems are typically close to each other, working set solvers are efficient when used with
warm start. Warm start consists in solving the current subproblem by starting the descent method from the solution
of the previous solved subproblem. Since the solutions are expected to be close to each other, this initialization
allows to start the descent closer to the optimum.

Which strategy should be used to grow the working set? The first outer-loop problem initializes a working
set with a pre-defined fixed size. If the approximate optimality condition is not satisfied (e.g. the duality gap is
too high) for the current working setW , some variables inWC must be added to the working set. Working sets
are usually grown using an arithmetic (i.e. adding pnew features at every outer-loop iteration) or geometric growth
(i.e. multiplying by α > 1 the size of the working set). In practice, the strategy we adopted in skglm is to double
the size of the working set at every outer-loop iteration, an arithmetic growth being too slow (Massias et al., 2018,
Appendix A.2).

Which features should be added to the working set? Choosing the right strategy to rank features is crucial
in order to ensure high performance with working sets. At every outer iteration, a record of the highest-ranked
features should be maintained, in order to add to the working set these high-ranked inactive variables. For now,
we focus on ranking strategies based on violation to first-order optimality conditions and include the ones that
violate them the most. Massias et al. (2018) proposed a ranking strategy based on gap-safe screening rules (see
Section 4.2.1) for the Lasso, which can be extended to all convex sparse generalized linear models. Using the
gap-safe rules from Example 50, features are ranked based on the following score

∀j ∈ [p], dj(θ) ,
1−

∣∣X>:j θ∣∣
‖X:j‖2

. (82)

Algorithm 7 uses this strategy to build working sets in the outer loop. Nonetheless, it is not the strategy used by
skglm. This ranking strategy is not available in a non-convex setting due to the non-existence of a dual problem.
Other ranking strategies are preferred, they are presented in details in Section 5.2.1 and Section 5.2.2.

Algorithm 7 COORDINATE DESCENT WITH WORKING SET

input : X ∈ Rn×p, β ∈ Rp, nin ∈ N∗, nout ∈ N∗,ws size ∈ N∗, ε > 0
1 for t = 1, . . . , nout do
2 θ(t) = ∇F (Xβ(t))/max(1,Ω∗(X>∇F (Xβ(t)))/λ) // Make θ(t) dual feasible

3 score =
(
dj(θ

(t))
)
j∈[p]

// Rank features

4 ws size = max(ws size, 2|Sβ(t) |) // Double ws size every outer-loop iteration

5 W = arg topK(score,K = ws size) // Take ws size features

6 if maxj∈[p](dj(θ
(t))) ≤ ε then

7 break
8 else
9 β(t+1) ← Algorithm 2 (X, y, β(t), nin,W) // Warm start from β(t)

10 return β(nout)

4.2.3 Homotopy methods

Homotopy methods are used in optimization to efficiently compute sparse generalized linear model solutions by
evaluating a regularization path. The regularization path is the function λ 7→ β(λ) for a given λ > 0. These
methods have been extensively studied in the field of signal processing (Malioutov et al., 2005; Z. Wen et al.,
2010; Sun and Yu, 2020) and sparse dictionary learning (Hale et al., 2008). In this subsection, we explain how
homotopy methods work and give an example with ElasticNet (Zou and Hastie, 2005). A similar example for the
Lasso (Tibshirani, 1996) can be found in Bach et al. 2011.

Homotopy methods are built on the observation that regularization paths are piecewise affine functions for quadratic
datafits. The paths are fully characterized by the slope coefficients of the affine pieces and its breakpoints (the point
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where the slopes change). This regularization path has been carefully described in Osborne et al. 2000 for the Lasso
(Tibshirani, 1996) and exploited to develop the LARS algorithm (Efron et al., 2004).

Main intuition. Homotopy methods are intimately connected to working sets. For non-zero indices of β ∈ Rp
(i.e. for features in the support), a convex sparse penalty is a locally linear function of β. Therefore, for a finite
number of λ, one can solve local problems using Algorithm 2 and piece together local solutions to get solutions
along the whole regularization path. This is this locally-linear property which gives the piecewise shape of the
regularization path. This algorithm proves to be computationally-efficient in that it has the same time complexity
as solving Problem 8 with quadratic programming for a single λ. There remains some central questions: how
to “detect” breakpoints, how to “detect” when a feature enters or leaves the active set. Homotopy methods rely
on closed-form expression of the optimality conditions to answer these questions. We present below a homotopy
algorithm to compute the full regularization path of the ElasticNet.

0.0 0.2 0.4 0.6 0.8 1.0
λ/λmax
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20

(a) Lasso.

0.0 0.2 0.4 0.6 0.8 1.0
λ/λmax

−10

0

10

20

(b) Elastic Net.

Figure 14: Regularization paths for Lasso and ElasticNet. Coefficient values with respect to the regularization
level λ/λmax. Each curve represents a coefficient in Lasso (Figure 14a) and ElasticNet (Figure 14b) regressions.
As the regularization level decreases, coefficients take larger and larger values. The breakpoints occur when one
coefficient becomes non-zero.

Example 51 (ElasticNet). The ElasticNet model reads

Φ(β) , arg min
β∈Rp

1

2
‖y −Xβ‖22︸ ︷︷ ︸

,f(β)

+λ

(
γ ‖β‖1 +

1− γ
2
‖β‖22

)
︸ ︷︷ ︸

,g(β)

. (83)

At the optimum, applying Theorem 17 yields − 1
λ∇f(β) ∈ ∂g(β). Then, using proximal calculus,

∇f(β) = X>(y −Xβ) and ∂g(β) =

{
[−γ, γ] for βj = 0 ,

γ sgn(βj) + (1− γ)βj for βj 6= 0 .
(84)

Hence the optimality conditions of ElasticNet reads{∣∣X>:j (y −Xβ)
∣∣ ≤ λγ for βj = 0 ,

X>:j (y −Xβ) = λγ sgn(βj) + λ(1− γ)βj for βj 6= 0 .
(85)

Let t , sgn(β) ∈ Rp. For a given level of regularization λ > 0, we can re-write the second optimality condition
in vectorial form:

X>Sβ (y −XSββSβ ) = λγtSβ + λ(1− γ)βSβ . (86)

Re-organizing this expression yields a closed-form solution of β(λ)
Sβ for some λ > 0:

β
(λ)
Sβ =

(
X>SβXSβ + λ(1− γ)I

)−1 (
X>Sβy − λγtSβ

)
, (87)

and by definition β(λ)

SCβ
= 0. Besides, notice that

(
X>SβXSβ + λ(1− γ)I

)
is a positive definite matrix, hence its

inverse exists. Equation (87) indicates that as long as tSβ and Sβ remain unchanged, λ 7→ β
(λ)
Sβ is affine. Now,
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given an active set and the sign of the coefficients in the active set, we are able to compute analytically β(β)
Sβ over a

portion of the regularization path. Note that we make the implicit assumption that λ 7→ β
(λ)
Sβ is continuous. This is

a well-know result for the Lasso (Osborne et al., 2000) and ElasticNet based on two assumptions. First, X>SβXSβ
must always be invertible. Second, updating Sβ along the path should only consist in adding or removing one
feature at a time. There remains to detect the breakpoints of the regularization path. Using Equation (85), one
needs to monitor when an inactive variable verifies the second optimality condition; and conversely, one needs to
monitor when an active variable verifies the first optimality condition. In the former case, the variable must be
included in the active set, while it must be removed in the latter case.

Algorithm 8 HOMOTOPY FOR ELASTICNET

input : X ∈ Rn×p, γ ∈ [0, 1], η ∈]0, 1[, λmin > 0,
init : λ0 = ‖X>y‖∞,W = ∅,B = ∅, β = 0p,K = bln(λ0/λmin)/ ln(1/η)c,

1 for k = 0, . . . ,K − 1 do
2 λ(k+1) = ηλ(k)

3 β(k) =
(
X>WXW + λ(k)(1− γ)I

)−1 (
X>Wy − λ(k)γtW

)
4 for j ∈ W do
5 if β(k)

j = 0 then
6 W .remove(j) // Remove inactive variables from the working set

7 for j ∈ WC do
8 if

∣∣X>j (y −Xβ(k))
∣∣ = γλ(k) then

9 W .add(j) // Add active variable to the working set

10 B.add(β(k))
11 return B

Time complexity. The time complexity of Algorithm 8 is dominated by the inversion of
(
X>WXW + λ(k)(1− γ)I

)
.

The initial inversion of this matrix costs O(p3) flops using a Cholesky factorization. Nonetheless, assuming only
one feature is added or removed at a time, at each breakpoint the rank of the matrix is changed by one unit (either
by the addition or the removal of one feature in the working set). Rank-one updates cost an additional O(p2) flops
at every iteration.

4.3 Experiments
Since we have studied several techniques to accelerate descent algorithms, we carry out experiments to prove the
superiority of these techniques. We focus exclusively on proximal gradient descent and coordinate descent, since
they are among the fastest algorithms to solve sparse generalized linear models. All the experiments are performed
using Benchopt (Moreau et al. (2022), Appendix C).

4.3.1 Inertial acceleration vs. extrapolation

We perform a benchmark on the efficiency of different types of acceleration. We compare proximal gradient de-
scent with Nesterov acceleration (FISTA, Beck and Teboulle (2009)), vanilla proximal gradient descent (ISTA) and
coordinate descent with Anderson extrapolation. Figure 15 shows that on various setups Anderson extrapolation
is orders of magnitude faster than FISTA. This result does not come as a surprise and has already been extensively
investigated in Bertrand and Massias (2021).
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Figure 15: Comparison inertia vs extrapolation. Duality gap as a function of time for the Lasso, on 3 different
datasets: leukemia, rcv1 and a simulated dataset (200 samples and 1000 features).

4.3.2 Ablation studies

We use the Lasso to carry out ablation studies on the relevance of acceleration techniques studied in the previous
subsection. Details of the datasets used to carry out the experiments are given in Section 3.3.1.

Impact of working set. As shown in Figure 16, the working set plays a crucial role for high-dimensional datasets
like finance and news20. In this experiment, we compare a coordinate descent solver with a working set
strategy, and one without a working set strategy. With more than a million features, solvers without a working set
cycle on the whole feature set. On the contrary, working set solvers are able to progressively identify the support
by quickly solving small inner subproblems used to warm-start the next inner solver. The larger the dimension of
the feature set, the more gain in speed working sets provide.
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Figure 16: Ablation of working set. Duality gap for the Lasso as a function of time for different regularization
levels, on 3 different datasets: finance, rcv1 and news20.

Impact of extrapolation. Figure 17 compares two solvers using working sets: one with extrapolation and one
without. It is worth noting that extrapolation has an impact for high level of regularization and large datasets. It is
particularly visible for the finance dataset where extrapolation finds better primal points as soon as the support
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is identified. The combination of a working set strategy with Anderson acceleration is particularly relevant: the
working set allows for a quick identification of the support and extrapolation makes the solver quickly converge
once the support is identified.
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Figure 17: Ablation of extrapolation. Duality gap of the Lasso as a function of time for different regularization
levels, on 3 different datasets: finance, rcv1 and news20.

4.3.3 Comparing off-the-shelf solvers for convex penalties

We focus on the Lasso (Problem 9) and sparse Logistic Regression (Problem 10) problems and benchmark sev-
eral Python solvers. All these solvers solve Problem 9 and Problem 10 by coordinate descent using different
techniques. Table 4 gives a summary of the heuristics and meta-algorithms used to accelerate the optimization
procedure. Results are presented in Figure 18 and Figure 19.

For very large-dimensional datasets like finance (4 272 227 features), the working set is crucial to avoid cy-
cling over the whole feature set at every coordinate descent epoch. scikit-learn (a solver without a working
set strategy) over-optimizes the first sub-problems: before finding the support, it is unnecessary to optimize over a
sub-optimality gap below 10−5.

We highlight that low-level optimization to the algorithm of Blitz has been made since the publication of the
paper (Johnson and Guestrin, 2015). Blitz now uses screening rules to select the features to be included in
priority to the working set, a strategy similar to Celer. We notice that both solvers offer the best performance on
finance and leukemia.

Table 4: Convex solvers for sparse generalized linear models.

Name Acceleration Working set Screening rules Language
glmnet (Friedman et al., 2009) 7 3 7 Fortran

scikit-learn (Pedregosa et al., 2011) 7 7 7 Cython
Lightning (Blondel and Pedregosa, 2016) 7 3 7 Cython

celer (Massias et al., 2018) 3 3 3 Cython
Blitz (Johnson and Guestrin, 2015) 7 3 3 C++

skglm (Bertrand et al., 2022) 3 3 7 Python
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Figure 18: Lasso. Duality gap as a function of time, on 4 different datasets: finance, leukemia, rcv1 and bodyfat.
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Figure 19: Sparse logistic regression. Duality gap as a function of time, on 3 different datasets: leukemia, news20
and rcv1.
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4.3.4 Benchmarking regularization paths
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Figure 20: Lasso path. Duality gap as a function of time, on 2 different datasets: leukemia and a (1000, 1000)
simulated dataset.

Figure 20 compares multiple techniques to evaluate the regularization path of a Lasso estimator. The regularization
path is the function λ 7→ β(λ) (see Section 4.2.3 for more details). The homotopy method is clearly faster, as it
leverages the linear piecewise structure of the regularization path. On the opposite, the other two solvers require
solving 100 optimization problems. Even though, some computational tricks like warm start are applied to speed
up the algorithm, solving 100 optimization problems remain very expensive. It is worth noting that sequential
screening rules (Bonnefoy et al., 2015; Ndiaye et al., 2017) are particularly efficient to evaluate the path.

5 skglm, a versatile solver for convex and non-convex optimization

5.1 Non-convex optimization
5.1.1 Sparser and less biased solutions with non-convex penalties

Altough convex penalties are widely used, they create estimators biased towards 0. This shrinkage of the coeffi-
cients is particularly significant for large coefficients. Ideally, estimators should shrink small coefficients to 0 while
keeping large coefficients untouched. Such penalties exist and are non-convex: they yield sparser solutions than

MCP, γ = 3 SCAD, γ = 3 `0.5 `1
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Figure 21: Non-convex penalties and their proximal operators. The `0.5-quasinorm, MCP (Zhang, 2010) and
SCAD (Fan and Li, 2001) are amongst the most widely-used non-convex penalties (left). Note that they are plotted
with the convex `1-penalty.

convex estimators and mitigate the intrinsic Lasso bias. Figure 21 shows the different one-dimensional penalty
and compares it to the `0-norm. The Smoothly Clipped Absolute Deviation (SCAD, Fan and Li (2001)) and the
Minimax Concave Penalty (MCP, Zhang (2010)) are two instances of non-convex penalties. They enjoy the oracle
property, meaning that “they perform as well as if the analyst had known in advance which coefficients were zero
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and which were nonzero” (Breheny and Huang, 2011). We are particularly interested in them since they have
closed form proximal operators that can be efficiently evaluated. Note that there exist others concave penalties like
the `0.5-quasinorm.

Example 52 (Minimax concave penalty, Zhang (2010)). MCP is parametrized by a curvature coefficient γ > 0
that controls the concavity of the penalty. MCP is defined on R+:

pλ,γ(x) =

{
λx− x2

2γ if x ≤ γλ ,
1
2γλ

2 otherwise.
(88)

To better understand how MCP works, it is worth studying its first derivative.

p′λ,γ(x) =

{
λ− x

γ if x ≤ γλ ,

0 otherwise.
(89)

MCP starts by applying a penalization rate λ > 0 similar to the `1-norm but continuously relaxes this penalization.
Once x > γλ, the penalization rate drops to 0 and no shrinkage is applied on the coefficients, thus mitigating the
bias towards 0.

Example 53 (Smoothly Clipped Absolute Deviation, Fan and Li (2001)). Like MCP, SCAD is parametrized by a
curvature coefficient γ > 2. It is defined on R+.

pλ,γ(x) =


λx if x ≤ λ ,
λγx−0.5(x2+λ2)

γ−1 if λ < x ≤ γλ ,
λ2(γ2−1)
2(γ−1) otherwise.

(90)

A similar reasoning can be made for the penalization rate of SCAD.

p′λ,γ(x) =


λ if x ≤ λ,
γλ−x
γ−1 if λ < x ≤ γλ,

0 if x > γλ .

(91)

Example 54 (`0.5-penalty). As stated in Section 3.1, it is a well-known fact that `pp-penalties with p ∈ [0, 1] yield
sparse solutions. The non-convex penalty `0.5 yields sparser solutions than the `1-norm.

‖x‖0.5 =

p∑
j=1

√
|xj | . (92)

Figure 22 demonstrates the ability of non-convex penalty to recover the correct support and zero-out true null
coefficients. The root mean squared error is the lowest, while the F1-score is the highest with non-convex penalties.

Figure 22: Comparison of support recovery between convex and non-convex penalties. The non-convex penal-
ties are able to achieve higher F1-score than the `1-norm (Lasso). Non-convex penalties yield sparser solutions
and are less biased: the RMSE between the true coefficients and the reconstructed coefficients is lower. The exper-
iment was carried out on a simulated 1000× 1000-dimensional matrix. The true coefficients are known since it is
a simulated setup.
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5.1.2 Proximal operators in the non-convex case

These sparser estimators come at a heavy price. First, non-convex estimators no longer enjoy the local-to-global
property. It is very likely that an optimization algorithm converges to a local minimum. Second, the algorithm now
depends on the initialization of the coefficient vector: for the same algorithm initialized at different points, they
may converge to different optima. Third, several tools used in convex optimization are no longer available.

As per Definition 23, the proximal operator is not necessarily defined for non-convex functions. Since proxi-
mal operators remain crucial in non-smooth optimization, we present conditions under which proximal mappings
are available for a larger class of functions than convex functions.

Definition 55 (Prox-regular functions, (Poliquin and Rockafellar, 1996, Definition 1.1)). A function f : Rd →
]−∞,+∞] is prox-regular at x0 for a subgradient g0 ∈ ∂f(x0) if f is locally lower semi-continuous at x0 and
there exists r > 0 and ε > 0 such that

f(x′) ≥ f(x) + g>(x′ − x)− r

2
‖x′ − x‖22 , (93)

whenever ‖x′ − x0‖ < ε, ‖x− x0‖ < ε with x′ 6= x and |f(x)− f(x0)| < ε while ‖g − g0‖ < ε. The function f
is said to be prox-regular if it is prox-regular at every x0 ∈ Rd.

Definition 56 (Prox-bounded functions, Hare and Sagastizábal (2009)). A function f : Rd → ]−∞,+∞] is prox-
bounded if there exists r ≥ 0 such that Mr

f (x) > −∞ for some x ∈ Rd. The infimum of all such r is called the
threshold of prox-boundedness of f .

Prox-boundedness merely states that there exists some level r ≥ 0 for which the Moreau envelope of f is
defined in at least one point.

Hare and Sagastizábal (2009) show that if a function f is prox-regular and prox-bounded at a point x0 ∈ Rd
for the subgradient g0 ∈ Rd, then in a neighborhood of x0 + 1

r g0 ∈ Rd, the proximal mapping proxrf exists, is
single-valued and Lipschitz continuous in some neighborhood of x0 + 1

r g0 ∈ Rd. We refer to Luu et al. (2017)
for a proof on the prox-regularity and prox-boundedness of SCAD (Fan and Li, 2001). We end this subsection by
giving a recapitulative table of non-convex penalties and their associated proximal operators.

Table 5: Proximal operators for non-convex sparse penalties

Penalty f(β) proxf

`0.5
∑p
j=1

√
βj


0 if |βj | < 3

2λ
2
3 ,

2
3βj(1 + cos( 2

3 arccos(− 3
3
2 λ
4 |βj |

− 3
2 ))) otherwise.

MCP
∑p
j=1 MCP(|βj |)



0 if |βj | < λ ,

βj if |βj | > λγ ,

sgn(βj)
|βj |−λ
1−1/γ otherwise.

5.1.3 A partial fix: iteratively reweighting convex norms?

The adaptive Lasso (Zou, 2006) has been proposed as a way to fit convex models sparser than the original Lasso
(Tibshirani, 1996), by introducing a weight vector w ∈ Rp in front of every coefficient that is penalized

β∗ ∈ arg min
β∈Rp

1

2n
‖y −Xβ‖22 + λ

p∑
j=1

wj |βj | . (94)
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Algorithm 9 ITERATIVE REWEIGHTED L1 MINIMIZATION

input : w ∈ Rp, niter ∈ N, ε ∈ R+, λ ∈ R+

init : w = 1p
1 for t = 1, . . . , niter do
2 Solve the weighted `1 minimization problem with Algorithm 7: β(t) ← arg min ‖y −Xβ‖22 + λ ‖w � β‖1
3 Update the weights: ∀i ∈ [p], w

(t+1)
i ← 1

|β(t)
i |+ε

4 return β

Large weights are used to encourage zero entries in the coefficient vector, while small weights would discourage
them. As a rule of thumb, the weights should relate inversely to the true coefficient magnitude. However, the true
coefficient vector β∗ ∈ Rp is unknown. How can a valid set of weights be obtained without knowing β∗ ∈ Rp in
the first hand?

Candes et al. (2008) propose a majorization-minimization (Sun et al. (2017), MM) algorithm to iteratively reweight
the coefficients of the Lasso estimator. A MM algorithm iteratively minimizes a surrogate function that majorizes
the objective function as shown in Figure 6. Consider the following constrained problem

min
β∈Rp

1

2n
‖y −Xβ‖22 +

p∑
i=1

log(|βi|+ ε) . (95)

Problem 95 is equivalent to the following

min
β,u∈Rp

1

2n
‖y −Xβ‖22 +

p∑
i=1

log(ui + ε) , |βi| ≤ ui, i ∈ [p] . (96)

Problem 96 is easier to solve since we get rid of the absolute value in the minimized term as it is now placed as
an additional constraint. To apply a MM algorithm, we need to majorize the log-sum function. Yet, the log-sum
function is concave and therefore below its tangents. Thus by taking a first-order Taylor expansion, we obtain a
linearization of the log-sum function in a neighborhood of u ∈ Rp. More formally, let g(u) =

∑p
i=1 log(ui + ε).

The first-order Taylor expansion in a neighborhood of u(t) ∈ Rp yields

u(t+1) = arg min
u∈Rp

g(u(t)) +∇g(u(t))>(u− u(t))

= arg min
u∈Rp

p∑
i=1

log(u
(t)
i + ε) + (u− u(t))

p∑
i=1

1

u
(t)
i + ε

.
(97)

By removing the terms that do not depend on u, it follows that

u(t+1) = arg min
u∈Rp

p∑
i=1

ui

u
(t)
i + ε

. (98)

And by equivalence,

β(t+1) = arg min
β∈Rp

p∑
i=1

|βi|
|β(t)
i |+ ε

. (99)

By letting ∀i ∈ [p], w
(t)
i = 1

|β(t)
i |+ε

, it follows:

β(t+1) = arg min
β∈Rp

1

2n
‖y −Xβ‖22 +

p∑
i=1

w
(t)
i |βi| . (100)

This gives an algorithm that iteratively reweight the `1-norm. Note that this algorithm minimizes a concave objec-
tive (log-sum is concave), by iteratively solving convex subproblems. Hence, due to the concavity of the objective
function, we are not guaranteed to converge to a global minimum.

Why choosing the log-sum function? The log-sum penalty function has the potential to be more sparsity-
encouraging than the `1 norm. More precisely, the smaller ε > 0 the closer the log-sum function is from the
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`0 norm. However, ε > 0 cannot be set arbitrarily small since as ε gets closer from 0, the problem Problem 95
becomes increasingly concave and the iterative reweighted `1 algorithm is more likely to be stuck at a local opti-
mum. In practice, the coefficient estimation is robust to the choice of ε.

Algorithm 9 works well in practice. In neuroscience, it is used to solve the M/EEG inverse problem by itera-
tively solving `2,1-reweighted subproblems (Strohmeier et al., 2016; Bannier et al., 2021). Nonetheless, it still
requires to solve multiple convex surrogate problems, an intractable effort in large-dimensional settings. Direct
optimization algorithms for non-convex problems have to be elaborated.

5.2 Feature-ranking strategies for non-convex penalties
Since we choose to optimize non-convex objectives, we are removed some informative and very useful tools to
optimize a function. In particular, working set strategies can no longer be built using aggressive screening rules as
explained in Section 4.2.2. We shall study which scores can be derived in a non-convex regime to rank features
that should be included in a working set.

5.2.1 Distance of the gradient to the subdifferential

Following Theorem 17, at the optimum the negative gradient of the datafit term belongs to the subdifferential of
the penalty:

−∇f(β̂) ∈ ∂g(β̂) . (101)

A natural criterion can be derived from this rule. Considering ∇f(β) ∈ Rp and ∂g(β) ⊆ Rp, one can compute
the distance between the gradient and the subdifferential. More precisely, since we are interested in ranking
features, we can compute the coordinate-wise gradient of f and evaluate the distance between the gradient and the
subdiffferential at βj ∈ R. Therefore, for j ∈ [p], features can be ranked based on the following score evaluated at
β ∈ Rp

scorej = dist(−∇jf(β), ∂gj(β)) . (102)

Equation (102) consists in ranking features based on their violation of the optimality condition. A similar idea
is used when using the KKT: features are ranked based on their violation of the Karush-Kuhn-Tucker (KKT)
conditions. This new ranking strategy yields Algorithm 10.

Algorithm 10 skglm (Bertrand et al., 2022)
input : X ∈ Rn×p, β ∈ Rp, nin ∈ N∗, nout ∈ N∗,ws size ∈ N∗, ε > 0

1 for k = 1, . . . , nout do
2 score = (dist(−∇jf(β), ∂gj(β)))j∈[p]

3 ws size = max(ws size, 2|Sβ |) // Double ws size every outer-loop iteration

4 W = arg topK(score,K = ws size) // Take ws size features with largest distance to the

subdifferential

5 if maxj∈[p] dist(−∇jf(β), ∂gj(β)) ≤ ε then
6 break
7 else
8 β ← Algorithm 2 (X, y, β, nin,W) // Warm start from β

9 return β

This scoring strategy is a crucial part of skglm as it allows to setup a working set strategy for convex and
non-convex penalties. Table 6 and Table 7 in Appendix D summarize the distance to the subdifferential score for
the most used convex and non-convex penalties. We adopt a geometric growth of the working set which enables
Algorithm 10 to quickly converge towards the generalized support while avoiding overshooting, as explained
in Ndiaye and Takeuchi 2021. A proof of the convergence of Algorithm 10 is given in Bertrand et al. (2022,
Proposition 5).

5.2.2 Violation of the fixed point iterate

For some penalties, the distance between the gradient and the subdifferential is uninformative. Indeed, if the
subdifferential is R, then the distance to the gradient restricted to the j-th coordinate is always null. Another
ranking strategy needs to be elaborated. In the non-convex case, one needs to rely on more general notions of
subdifferentiability. In particular, the Fréchet subdifferential is defined and used in the non-convex case.
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Definition 57 (Fréchet subdifferential, Kruger (2003, Definition 1.1)). Let f : Rd → ]−∞,+∞] be a function
finite at x ∈ Rd. The Fréchet-subdifferential of f at x is the set

∂̂f(x) =

{
v ∈ Rd : lim inf

x′→x

f(x′)− f(x)− 〈v, x′ − x〉
‖x′ − x‖ ≥ 0

}
. (103)

Proposition 58 (Kruger (2003, Proposition 1.2)). If a function f : Rd → ]−∞,+∞] is convex, then for any
x ∈ Rd, ∂f(x) = ∂̂f(x).

Proposition 59 (Subdifferential of `0.5). The Fréchet-subdifferential of the `0.5-penalty at 0 is R.

Proof. Take gj(·) =
√·. On one hand, by definition, ∂̂gj(0) ⊆ R. On the other hand, let x ∈ R. It follows that

lim infu→0

√
u−xu
|u| = +∞. Therefore ∂̂gj(0) = R.

Since for all β ∈ Rp, ∇jf(β) is a real scalar, the distance to the subdifferential is always 0, making the score
uninformative.

The idea to create another scoring strategy remains the same: deriving an optimality condition and evaluating
the violation of this condition for every feature. Using Theorem 24, β̂ ∈ Rp is a critical point of the objective if

β̂ = proxgj/Lj (β̂ −
1

Lj
∇jf(β̂)) . (104)

Therefore, the proposed criterion consists in evaluating the violation of the fixed point iterate

scorej =

∣∣∣∣β̂j − proxgj/Lj

(
β̂j −

1

Lj
∇jf(β̂)

)∣∣∣∣ . (105)

This criterion can be seen as a restriction of the scoring strategy proposed in Section 5.2.1. Indeed, every fixed
point of the proximal operator is a critical point while the converse may not be true. Besides, it is powerful as it
only relies on∇jf(β̂) and proxgj/Lj , two quantities that are known for the vast majority of problems of the form
Problem 8.

5.3 skglm in details
We have reviewed all the components needed to present in depth skglm. The algorithm revolves around two
central components: a working set strategy and Anderson acceleration. We present how the algorithm has been
implemented and discuss some design choices to ensure the framework is modular. skglm combines two acceler-
ation techniques to obtain significant speed-ups.

1. Working set: as explained in Section 4.2.2, a working set strategy avoids spending useless computation on
features out of the generalized support. The working set is grown geometrically to quickly identify the gen-
eralized support using the scoring strategy presented in Section 5.2.1. When this strategy is uninformative,
we rely on the fixed point violation strategy presented in Section 5.2.2.

2. Anderson acceleration: experiments performed in Section 3.3.1 have demonstrated the practical speed
ups obtained by Anderson acceleration (Section 4.1.2) for quadratic and non-quadratic datafits. Anderson
acceleration is applied with ease to non-convex problems and enjoys faster convergence.

The library has been written in full Python using the just-in-time compiler Numba (Lam et al., 2015). The com-
parison performed in Appendix B shows that Numba and Cython have similar runtimes. To maintain a readable
and flexible codebase, Numba has been chosen to accelerate the runtime of our library skglm.

The library has been designed in order to be very modular. Datafits and penalties are defined separately in Python
classes. Instantiated objects are then fed to a solver Python function which outputs the problem solution. This
design enables us to quickly support new penalties and datafits: a new penalty is typically written in under 40
lines of code as demonstrated in Listing 1 and Listing 2 (see Appendix E). This highly modular design is also very
convenient to implement new solvers: Gram-based and residual-based coordinate descent solvers for instance (see
Section 3.2.3).

skglm exhibits several advantages:

1. Speed: skglm achieves state-of-the-art performance for non-convex penalties.
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2. Modularity: the API design makes it really easy to add one datafit or one penalty.

3. Flexiblity: it is very easy to try various combinations of models (e.g. logistic datafits with a SCAD penalty).

This package has been released in the scikit-learn ecosystem and abides by the highest standards (Buitinck
et al., 2013) of machine learning library API.
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E. Soubies. Sur Quelques Problèmes de Reconstruction en Imagerie MA-TIRF et en Optimisation Parcimonieuse
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A Deriving the dual SVM with Hinge loss
With ∀i ∈ [n], xi ∈ Rp, yi ∈ {−1, 1}, the primal formulation of the support vector machine (with slack variables)
reads

min
β∈Rp

C

n∑
i=1

ζi +
1

2
‖β‖2

s.t. yi(β
>xi) ≥ 1− ζi, ∀i ∈ [n],

ζi ≥ 0, ∀i ∈ [n].

(106)

where ζi, i ∈ [n] are slack variables. Without slack variables, the (hard-margin) SVM assumes that classes are
perfectly linearly separable and that the conditional class distributions do not overlap. In practice, this assumption
is rarely satisfied and requires the introduction of slack variables, yielding the soft-margin SVM. Data points are
allowed to be misclassified on the “wrong side” of the decision boundary, with a penalty that increases proportion-
ally with the distance of the misclassified point to the boundary. The hyperparameter C > 0 is a trade-off between
the slack variable penalty and the margin. The associated Lagrangian is

L(β, ζ, α, µ) =
1

2
‖β‖2 + C

n∑
i=1

ζi −
n∑
i=1

αi(yi(β
>xi)− 1 + ζi)−

n∑
i=1

µiζi . (107)

with ∀i ∈ [n], αi, µi ≥ 0 the Lagrange multipliers. Differentiating the Lagrangian with respect to the primal
variables β and ζ yields

∂L
∂β

= 0⇒ β =

n∑
i=1

αiyixi ,

∂L
∂ζi

= 0⇒ αi = C − µi .
(108)

Eliminating β under these conditions in L yields the dual problem of SVM

max
α∈Rn

− 1

2

n∑
i=1

n∑
k=1

αiαkyiykx
>
k xi +

n∑
i=1

αi

s.t. ∀i ∈ [n], 0 ≤ αi ≤ C .

(109)

In vectorial form, with the Gram matrix G ∈ Rn×n such that Gi,k = yiykx
>
k xi, the problem reads

min
α∈Rn

1

2
α>Gα−

n∑
i=1

αi s.t. ∀i ∈ [n], 0 ≤ αi ≤ C . (110)

The box constraints of the dual problem can be expressed with an indicator function

min
α∈Rn

1

2
α>Gα−

n∑
i=1

αi + ι[0,C](αi) . (111)

Problem 111 falls into the framework of Problem 8, with the penalty function g = ι[0,C].

B Comparing runtimes: Numba vs. Cython
To implement fast solvers, writing algorithms in low-latency languages is crucial. A trivial choice consists in
choosing a low-level language like C or C++ to ensure fast algebraic operations. However, maintaining and ex-
tending a codebase written exclusively in these low-latency languages remains a challenge. To circumvent this
issue, other alternatives like Cython (Behnel et al., 2011) or Numba (Lam et al., 2015) have emerged.

Numba is a compiler for Python scripts. Simply put, it enables to speed up critical computational-intensive
parts of a Python script by adding a one-line function decorator. This allows for easier code maintenance and
comprehension for Python users. On the other hand, Cython acts as a bridge between C and Python, enabling
near-C performance at compile time, at the expense of writing the codebase in a heavier C-like syntax. Cython
and Numba having similar performance at compile time, we opted for Numba for ease-of-use when designing
skglm (Bertrand et al., 2022).
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C Fair comparison between solvers with Benchopt
The Benchopt library (Moreau et al., 2022) is a benchmarking tool for optimization solvers in machine learning.
Solvers are treated as black boxes, fed with an input dataset D and minimizing some objective f . The solver is
run successively for 1 iteration, then 2 (starting again from 0), then 3, etc. This allows to generate a convergence
curve, indicative of the performance of a solver. Directly measuring the time per iteration, or the total time taken
by an algorithm would not be a reproducible strategy since solvers are heavily reliant on the underlying hardware
specifications of the machine they are running on.

Plots generated by Benchopt should be analyzed by taking into account the steepness of the curve (the steeper
the better), as well as the number of iterations taken by the solver to converge.
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D Distance to the subdifferential for convex and non-convex penalties

Table 6: Distance to the subdifferential for single-task convex and non-convex penalties

Penalty dist(−∇jf(β), ∂gj(β))

`1


max(0, |∇jf(β)| − λ) if βj = 0 ,

|−∇jf(β)− λsgn(βj)| otherwise .

`1 + `2


max(0, |∇jf(β)| − λγ) if βj = 0 ,

|−∇jf(β)− λ(γsgn(βj) + (1− γ)βj)| otherwise .

`0.5


0 if βj = 0 ,∣∣∣∣−∇jf(β)− λ sgn(βj)

2
√
|βj |

∣∣∣∣ otherwise .

`2/3


0 if βj = 0 ,∣∣∣−∇jf(β)− λ 2sgn(βj)

3|βj |1/3

∣∣∣ otherwise .

MCP



max(0, |∇jf(β)| − λ) if βj = 0 ,∣∣∣∇jf(β) + λsgn(βj)− βj
γ

∣∣∣ if |βj | < λγ ,

|∇jf(β)| otherwise .

SCAD



max(0, |∇jf(β)| − λ) if βj = 0 ,

|∇jf(β) + λsgn(βj)| if |βj | < λ ,∣∣∣∇jf(β) +
λγsgn(βj)−βj

γ−1

∣∣∣ if λ ≤ |βj | ≤ λγ ,

|∇jf(β)| otherwise.

ι[0,C]



max(0,−∇jf(β)) if βj = 0 ,

max(0,∇jf(β)) if βj = λ ,

|∇jf(β)| otherwise .
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Table 7: Distance to the subdifferential for multi-task convex and non-convex penalties

Penalty dist(−∇jf(B), ∂gj(B))

`2,1


max(0, ‖∇jf(B)‖ − λ) if Bj,: = 0∥∥∥∇jf(B) + λ

Bj,:
‖Bj,:‖

∥∥∥ otherwise.

`2,0.5


0 if Bj,: = 0∥∥∥∇jf(B) + λ

Bj,:
(2‖Bj,:‖)3/2

∥∥∥ otherwise.

Block MCP



max(0, ‖∇jf(B)‖ − λ) if Bj,: = 0∥∥∥∇jf(B) + λ
Bj,:
‖Bj,:‖ −

Bj,:
γ

∥∥∥ if ‖Bj,:‖ ≤ λγ

‖∇jf(B)‖ otherwise.

Block SCAD



max(0, ‖∇jf(B)‖ − λ) if Bj,: = 0∥∥∥∇jf(B) + λ
Bj,:
‖Bj,:‖

∥∥∥ if ‖Bj,:‖ ≤ λ

∥∥∥∇jf(B) +
λγ−‖Bj,:‖
‖Bj,:‖(γ−1)Bj,:

∥∥∥ if λ ≤ ‖Bj,:‖ ≤ γλ

‖∇jf(B)‖ otherwise.
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E Example code in skglm

1 class MCPenalty(BasePenalty):
2 def __init__(self, alpha, gamma):
3 self.alpha = alpha
4 self.gamma = gamma
5
6 def value(self, w):
7 """Compute the value of MCP."""
8 s0 = np.abs(w) < self.gamma * self.alpha
9 value = np.full_like(w, self.gamma * self.alpha ** 2 / 2.)

10 value[s0] = (self.alpha * np.abs(w[s0]) - w[s0]**2
11 / (2 * self.gamma))
12 return np.sum(value)
13
14 def prox_1d(self, value, stepsize, j):
15 """Compute the proximal operator of MCP."""
16 tau = self.alpha * stepsize
17 g = self.gamma / stepsize
18 if np.abs(value) <= tau:
19 return 0.
20 if np.abs(value) > g * tau:
21 return value
22 return np.sign(value) * (np.abs(value) - tau) / (1. - 1./g)
23
24 def subdiff_distance(self, w, grad, ws):
25 """Compute distance of -grad to the subdifferential at w."""
26 subdiff_dist = np.zeros_like(grad)
27 for idx, j in enumerate(ws):
28 if w[j] == 0:
29 subdiff_dist[idx] = max(
30 0, np.abs(grad[idx]) - self.alpha)
31 elif np.abs(w[j]) < self.alpha * self.gamma:
32 subdiff_dist[idx] = np.abs(
33 grad[idx] + self.alpha * np.sign(w[j])
34 - w[j] / self.gamma)
35 else:
36 # distance of grad to 0
37 subdiff_dist[idx] = np.abs(grad[idx])
38 return subdiff_dist
39
40 def is_penalized(self, n_features):
41 """Return a binary mask with the penalized features."""
42 return np.ones(n_features, bool_)
43
44 def generalized_support(self, w):
45 """Return a mask with non-zero coefficients."""
46 return w != 0

Listing 1: MCP implementation in skglm within a Python class. A penalty in skglm must implement only
5 methods to be fully usable.
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1 class Quadratic(BaseDatafit):
2 def __init__(self):
3 pass
4
5 def initialize(self, X, y):
6 self.Xty = X.T @ y
7 n_features = X.shape[1]
8 self.lipschitz = np.zeros(n_features, dtype=X.dtype)
9 for j in range(n_features):

10 self.lipschitz[j] = (X[:, j] ** 2).sum() / len(y)
11
12 def initialize_sparse(
13 self, X_data, X_indptr, X_indices, y):
14 n_features = len(X_indptr) - 1
15 self.Xty = np.zeros(n_features, dtype=X_data.dtype)
16 self.lipschitz = np.zeros(n_features, dtype=X_data.dtype)
17 for j in range(n_features):
18 nrm2 = 0.
19 xty = 0
20 for idx in range(X_indptr[j], X_indptr[j + 1]):
21 nrm2 += X_data[idx] ** 2
22 xty += X_data[idx] * y[X_indices[idx]]
23
24 self.lipschitz[j] = nrm2 / len(y)
25 self.Xty[j] = xty
26
27 def value(self, y, w, Xw):
28 return np.sum((y - Xw) ** 2) / (2 * len(Xw))
29
30 def gradient_scalar(self, X, y, w, Xw, j):
31 return (X[:, j] @ Xw - self.Xty[j]) / len(Xw)
32
33 def gradient_scalar_sparse(
34 self, X_data, X_indptr, X_indices, y, Xw, j):
35 XjTXw = 0.
36 for i in range(X_indptr[j], X_indptr[j+1]):
37 XjTXw += X_data[i] * Xw[X_indices[i]]
38 return (XjTXw - self.Xty[j]) / len(Xw)
39
40 def full_grad_sparse(
41 self, X_data, X_indptr, X_indices, y, Xw):
42 n_features = X_indptr.shape[0] - 1
43 n_samples = y.shape[0]
44 grad = np.zeros(n_features, dtype=Xw.dtype)
45 for j in range(n_features):
46 XjTXw = 0.
47 for i in range(X_indptr[j], X_indptr[j + 1]):
48 XjTXw += X_data[i] * Xw[X_indices[i]]
49 grad[j] = (XjTXw - self.Xty[j]) / n_samples
50 return grad

Listing 2: Quadratic datafit implementation in skglm. The Quadratic datafit is concisely implemented in just
50 lines of code and 6 methods.
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